首页> 外文OA文献 >Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption
【2h】

Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption

机译:智能城市能源可持续性:人工智能,智能监测和能耗优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Energy sustainability is one of the key questions that drive the debate on cities’ and urban areas development. In parallel, artificial intelligence and cognitive computing have emerged as catalysts in the process aimed at designing and optimizing smart services’ supply and utilization in urban space. The latter are paramount in the domain of energy provision and consumption. This paper offers an insight into pilot systems and prototypes that showcase in which ways artificial intelligence can offer critical support in the process of attaining energy sustainability in smart cities. To this end, this paper examines smart metering and non-intrusive load monitoring (NILM) to make a case for the latter’s value added in context of profiling electric appliances’ electricity consumption. By employing the findings in context of smart cities research, the paper then adds to the debate on energy sustainability in urban space. Existing research tends to be limited by data granularity (not in high frequency) and consideration of about six kinds of appliances. In this paper, a hybrid genetic algorithm support vector machine multiple kernel learning approach (GA-SVM-MKL) is proposed for NILM, with consideration of 20 kinds of appliance. Genetic algorithm helps to solve the multi-objective optimization problem and design the optimal kernel function based on various kernel properties. The performance indicators are sensitivity (Se), specificity (Sp) and overall accuracy (OA) of the classifier. First, the performance evaluation of proposed GA-SVM-MKL achieves Se of 92.1%, Sp of 91.5% and OA of 91.8%. Second, the percentage improvement of performance indicators using proposed method is more than 21% compared with traditional kernel. Third, results reveal that by keeping different modes of electric appliance as identical class label, the performance indicators can increase to about 15%. Forth, tunable modes of GA-SVM-MKL classifier are proposed to further enhance the performance indicators up to 7%. Overall, this paper is a bold and novel contribution to the debate on energy utilization and sustainability in urban spaces as it integrates insights from artificial intelligence, IoT, and big data analytics and queries them in a context defined by energy sustainability in smart cities.
机译:能源可持续性是推动城市和城市地区发展争论的关键问题之一。平行,人工智能和认知计算已成为旨在设计和优化城市空间中智能服务供应和利用的过程中的催化剂。后者在能量提供和消费领域至关重要。本文提供了进入试点系统和原型的洞察,以展示人工智能在实现智能城市的能源可持续性过程中提供关键支持。为此,本文审查了智能计量和非侵入式负载监测(NILM),以便在分析电器电力消耗的背景下添加后者的增值。通过在智能城市研究的背景下雇用调查结果,然后该文件增加了城市空间能源可持续性的辩论。现有的研究往往受数据粒度(不高频率)的限制,并考虑大约六种电器。本文提出了一种混合遗传算法支持向量机的多核学习方法(GA-SVM-MKL),用于尼姆,考虑到20种设备。遗传算法有助于解决基于各种内核属性的多目标优化问题并设计最佳内核功能。性能指标是敏感性(SE),特异性(SP)和分类器的总体精度(OA)。首先,拟议的GA-SVM-MKL的性能评价实现了92.1%,SP为91.5%,oa为91.8%。其次,与传统内核相比,使用所提出的方法的性能指标的改善率超过21%。第三,结果表明,通过将不同模式保持不同的电器作为相同的类标签,性能指标可以增加到约15%。提出了GA-SVM-MKL分类器的可调模式,以进一步增强高达7%的性能指标。总体而言,本文对城市空间中的能源利用和可持续性的辩论是大胆而新的贡献,因为它集成了人工智能,物联网和大数据分析的见解,并在智能城市中能源可持续性定义的背景下查询它们。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号