首页> 外文OA文献 >SAR Oil Spill Detection System through Random Forest Classifiers
【2h】

SAR Oil Spill Detection System through Random Forest Classifiers

机译:通过随机森林分类器的SAR漏油检测系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A set of open-source routines capable of identifying possible oil-like spills based on two random forest classifiers were developed and tested with a Sentinel-1 SAR image dataset. The first random forest model is an ocean SAR image classifier where the labeling inputs were oil spills, biological films, rain cells, low wind regions, clean sea surface, ships, and terrain. The second one was a SAR image oil detector named “Radar Image Oil Spill Seeker (RIOSS)”, which classified oil-like targets. An optimized feature space to serve as input to such classification models, both in terms of variance and computational efficiency, was developed. It involved an extensive search from 42 image attribute definitions based on their correlations and classifier-based importance estimative. This number included statistics, shape, fractal geometry, texture, and gradient-based attributes. Mixed adaptive thresholding was performed to calculate some of the features studied, returning consistent dark spot segmentation results. The selected attributes were also related to the imaged phenomena’s physical aspects. This process helped us apply the attributes to a random forest, increasing our algorithm’s accuracy up to 90% and its ability to generate even more reliable results.
机译:一组能够识别基于两个随机林分类器的可能的油状溢出的开放源例程,并用Sentinel-1 SAR图像数据集进行测试和测试。第一个随机森林模型是海洋SAR图像分类器,标签输入是漏油,生物薄膜,雨细胞,低风区域,清洁海面,船舶和地形。第二个是名为“雷达图像漏油搜索器(Rioss)”的SAR图像油探测器,其分类为油状靶标。开发了一种优化的特征空间,作为对这些分类模型的输入,也是在方差和计算效率方面的输入。它涉及从42个图像属性定义的广泛搜索,基于其相关性和基于分类的重要性估计。此数字包括统计,形状,分形几何,纹理和基于梯度的属性。进行混合自适应阈值,以计算研究的一些特征,返回一致的暗点分割结果。所选属性也与成像现象的身体方面有关。此过程帮助我们将属性应用于随机林,提高算法的准确性高达90%,其能够产生更可靠的结果。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号