首页> 外文OA文献 >Employ DBSCAN and Neighbor Voting to Screen Selective Forwarding Attack Under Variable Environment in Event-Driven Wireless Sensor Networks
【2h】

Employ DBSCAN and Neighbor Voting to Screen Selective Forwarding Attack Under Variable Environment in Event-Driven Wireless Sensor Networks

机译:使用DBSCAN和邻居投票在活动驱动的无线传感器网络中的可变环境下屏蔽选择性转发攻击

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the event-driven wireless sensor networks (EWSNs), the event of interests occurs irregularly and at random in the network. Then, sensor nodes near the event sense the event and send out data packets of the event. Next, router nodes (RNs) forward those packets to the sink node (SN) by multi-hop communications. Compromised RNs would become malicious and launch selective forwarding attacks by dropping part of or all the packets from other nodes. On the other hand, a harsh environment makes the channel poor, so the routing nodes under a harsh environment have low packet forwarding rates because they sometimes have to give up forwarding the current packets after many tries to forward them due to poor channel. If the malicious nodes’ forwarding rates become close to those of nodes under a harsh environment, the schemes based on packet forwarding rates for detecting selective forwarding attack may fail because they cannot differentiate the low data packet forwarding rates resulting from the malicious behaviors or harsh environment. To solve this problem, we provide a combined scheme for detecting selective forwarding attack in wireless sensor networks (WSNs) under harsh environments. This scheme employs a data clustering algorithm (DCA) to screen the malicious nodes out by clustering their cumulative forwarding rates (CFRs) and designs a voting decision method to protect the nodes under a harsh environment from being judged as malicious nodes. The simulation results show that our scheme has a low false detection rate (FDR) of 1% and a low missed detection rate (MDR) of 5% respectively with negligible energy consumption in WSNs under a local variable harsh environment.
机译:在事件驱动的无线传感器网络(EWSNS)中,感兴趣的事件不规则地发生在网络中。然后,在事件附近的传感器节点感测事件并发送事件的数据包。接下来,路由器节点(RNS)通过多跳通通信将这些分组转发到宿节点(SN)。受损RNS将通过从其他节点中的部分或所有数据包丢弃或所有数据包而变得恶意并启动选择性转发攻击。另一方面,恶劣的环境使信道差,因此恶劣环境下的路由节点具有低的数据包转发速率,因为它们有时必须放弃在许多人试图由于信道而转发时转发当前数据包。如果恶意节点的转发速率接近恶劣环境下的节点,则基于用于检测选择性转发攻击的数据包转发速率的方案可能会失败,因为它们无法区分由恶意行为或恶劣环境产生的低数据包转发速率。为了解决这个问题,我们提供了一种组合方案,用于在恶劣环境下检测无线传感器网络(WSNS)中的选择性转发攻击。该方案采用数据聚类算法(DCA)来通过聚类其累积转发速率(CFR)来筛选恶意节点,并设计投票决策方法,以保护节点在恶劣环境下被判定为恶意节点。仿真结果表明,我们的方案在局部可变恶劣环境下,我们的方案的低误报率(FDR)分别为1%,低未错过的检测率(MDR),其在WSN中的能耗可忽略不计。

著录项

  • 作者

    Yinghong Liu; Yuanming Wu;

  • 作者单位
  • 年度 2021
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号