首页> 外文OA文献 >Improving Deep Learning for Forecasting Accuracy in Financial Data
【2h】

Improving Deep Learning for Forecasting Accuracy in Financial Data

机译:改善深入学习预测财务数据准确性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Financial forecasting is based on the use of past and present financial information to make the best prediction of the future financial situation, to avoid high-risk situations, and to increase benefits. Such forecasts are of interest to anyone who wants to know the state of possible finances in the future, including investors and decision-makers. However, the complex nature of financial data makes it difficult to get accurate forecasts. Artificial intelligence, which has been shown to be suitable for analyzing very complex problems, can be applied to financial forecasting. Financial data is both nonlinear and nonstationary, with broadband frequency features. In other words, there is a large range of fluctuation, meaning that predictions made only using long short-term memory (LSTM) are not enough to ensure accuracy. This study uses an LSTM model for analysis of financial data, followed by a comparison of the analytical results with the actual data to see which has a larger root-mean-square-error (RMSE). The proposed method combines deep learning with empirical mode decomposition (EMD) to understand and predict financial trends from financial data. The financial data for this study are from the Taiwan corporate social responsibility (CSR) index. First, the EMD method is used to transform the CSR index data into a limited number of intrinsic mode functions (IMF). The bandwidth of these IMFs becomes narrower, with regular cyclic, periodic, or seasonal components in the time domain. In other words, the range of fluctuation is small. LSTM is a good way to forecast cyclic or seasonal data. The forecast result is obtained by adding all the IMFs together. It has been verified in past studies that only the LSTM and LSTM combined with the EMD can be used. The analytical results show that smaller RMSEs can be obtained using the LSTM combined with EMD compared to real data.
机译:财务预测是基于使用的过去和现在的财务信息,使未来的财务状况最好的预测,避免高风险的情况下,增加效益。这种预测是利益对任何人谁想要知道未来可能的财务状况,包括投资者和决策者的状态。然而,财务数据的复杂性,使得它很难得到准确的预测。人工智能,这已被证明是适合于分析非常复杂的问题,可以应用到财务预测。金融数据是既非线性,非平稳,具有宽带频率特性。换句话说,有一个大的范围内波动,这意味着预测仅使用长短期记忆(LSTM)中所作的不足以确保精度。本研究采用的金融数据的分析的模型LSTM,接着用实际数据的分析结果的比较,看看哪个具有较大的根均方误差(RMSE)。有经验模式分解(EMD)深学所提出的方法相结合,了解和财务数据预测金融趋势。这项研究的财务数据来自台湾的企业社会责任(CSR)指数。首先,EMD方法用于将CSR索引数据转换成的固有模态函数(IMF)的数量有限。这些的IMF的带宽变窄,定期环状的,周期性的,或季节性部件在时域中。换言之,波动范围较小。 LSTM是一个很好的方式来预测周期性或季节性数据。预测结果是通过将所有的IMF在一起而获得。它已经在过去的研究中,只有LSTM和LSTM与EMD相结合,可用于验证。分析结果表明,较小的RMSEs可以使用与LSTM EMD组合相比实际数据获得。

著录项

  • 作者

    Shih-Lin Lin; Hua-Wei Huang;

  • 作者单位
  • 年度 2020
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号