首页> 外文OA文献 >Methods for Improving Deep Learning-Based Cardiac Auscultation Accuracy: Data Augmentation and Data Generalization
【2h】

Methods for Improving Deep Learning-Based Cardiac Auscultation Accuracy: Data Augmentation and Data Generalization

机译:提高基于深度学习的心脏的方法:数据增强和数据泛化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cardiac auscultation is a cost-effective and noninvasive technique for cardiovascular disease detection. Recently, various studies have been underway for cardiac auscultation using deep learning, not doctors. When training a deep learning network, it is important to secure large amount of high-quality data. However, medical data are difficult to obtain, and in most cases the number of abnormal classes is insufficient. In this study, data augmentation is used to supplement the insufficient amount of data, and data generalization to generate data suitable for convolutional neural networks (CNN) is proposed. We demonstrate performance improvements by inputting them into the CNN. Our method achieves an overall performance of 96%, 81%, and 90% for sensitivity, specificity, and F1-score, respectively. Diagnostic accuracy was improved by 18% compared to when it was not used. Particularly, it showed excellent detection success rate for abnormal heart sounds. The proposed method is expected to be applied to an automatic diagnosis system to detect heart abnormalities and help prevent heart disease through early detection.
机译:心脏听诊是一种成本效益和非侵入性的心血管疾病检测技术。最近,使用深度学习,不是医生,对心脏灵活化进行了各种研究。在培训深度学习网络时,很重要的是确保大量的高质量数据。然而,医疗数据难以获得,并且在大多数情况下,异常类别的数量不足。在本研究中,数据增强用于补充数据量不足,并且提出了生成适合于卷积神经网络(CNN)的数据的数据概括。我们通过将它们输入CNN来展示性能改进。我们的方法分别实现了96%,81%和90%的整体性能,分别为灵敏度,特异性和F1分数。与未使用时,诊断准确度提高18%。特别是,它显示出异常心音的良好检测成功率。预期该方法预计将应用于自动诊断系统以检测心脏异常,并通过早期检测来帮助预防心脏病。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号