Cardiac auscultation is a cost-effective and noninvasive technique for cardiovascular disease detection. Recently, various studies have been underway for cardiac auscultation using deep learning, not doctors. When training a deep learning network, it is important to secure large amount of high-quality data. However, medical data are difficult to obtain, and in most cases the number of abnormal classes is insufficient. In this study, data augmentation is used to supplement the insufficient amount of data, and data generalization to generate data suitable for convolutional neural networks (CNN) is proposed. We demonstrate performance improvements by inputting them into the CNN. Our method achieves an overall performance of 96%, 81%, and 90% for sensitivity, specificity, and F1-score, respectively. Diagnostic accuracy was improved by 18% compared to when it was not used. Particularly, it showed excellent detection success rate for abnormal heart sounds. The proposed method is expected to be applied to an automatic diagnosis system to detect heart abnormalities and help prevent heart disease through early detection.
展开▼