首页> 外文期刊>Pattern Analysis and Applications >Deep learning-based data augmentation method and signature verification system for offline handwritten signature
【24h】

Deep learning-based data augmentation method and signature verification system for offline handwritten signature

机译:None

获取原文
获取原文并翻译 | 示例

摘要

Offline handwritten signature verification is a challenging pattern recognition task. One of the most significant limitations of the handwritten signature verification problem is inadequate data for training phases. Due to this limitation, deep learning methods that have obtained the state-of-the-art results in many areas achieve quite unsuccessful results when applied to signature verification. In this study, a new use of Cycle-GAN is proposed as a data augmentation method to address the inadequate data problem on signature verification. We also propose a novel signature verification system based on Caps-Net. The proposed data augmentation method is tested on four different convolutional neural network (CNN) methods, VGG16, VGG19, ResNet50, and DenseNet121, which are widely used in the literature. The method has provided a significant contribution to all mentioned CNN methods' success. The proposed data augmentation method has the best effect on the DenseNet121. We also tested our data augmentation method with the proposed signature verification system on two widely used databases: GPDS and MCYT. Compared to other studies, our verification system achieved the state-of-the-art results on MCYT database, while it reached the second-best verification result on GPDS.
机译:离线手写签名验证是一个具有挑战性的模式识别任务。手写签名验证问题的最重要限制之一是培训阶段的数据不足。由于这种限制,在应用于签名验证时,获得了最先进的最先进的最新结果的深度学习方法实现了相当不成功的结果。在本研究中,提出了新的循环GaN使用作为数据增强方法,以解决签名验证的数据问题不足。我们还提出了一种基于CAPS-Net的新型签名验证系统。在四种不同的卷积神经网络(CNN)方法,VGG16,VGG19,Reset50和Densenet121上测试了所提出的数据增强方法,这些方法在文献中广泛使用。该方法为所有提到的CNN方法的成功提供了重大贡献。所提出的数据增强方法对Densenet121具有最佳影响。我们还通过两个广泛使用的数据库中提出的签名验证系统测试了我们的数据增强方法:GPDS和MCYT。与其他研究相比,我们的验证系统在MCYT数据库上实现了最先进的结果,而在GPDS上达到了第二个最佳验证结果。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号