首页> 外文OA文献 >Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model
【2h】

Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model

机译:基于改进U-Net模型的地震滑坡提取算法研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Seismic landslides are the most common and highly destructive earthquake-triggered geological hazards. They are large in scale and occur simultaneously in many places. Therefore, obtaining landslide information quickly after an earthquake is the key to disaster mitigation and relief. The survey results show that most of the landslide-information extraction methods involve too much manual participation, resulting in a low degree of automation and the inability to provide effective information for earthquake rescue in time. In order to solve the abovementioned problems and improve the efficiency of landslide identification, this paper proposes an automatic landslide identification method named improved U-Net model. The intelligent extraction of post-earthquake landslide information is realized through the automatic extraction of hierarchical features. The main innovations of this paper include the following: (1) On the basis of the three RGB bands, three new bands, DSM, slope, and aspect, with spatial information are added, and the number of feature parameters of the training samples is increased. (2) The U-Net model structure is rebuilt by adding residual learning units during the up-sampling and down-sampling processes, to solve the problem that the traditional U-Net model cannot fully extract the characteristics of the six-channel landslide for its shallow structure. At the end of the paper, the new method is used in Jiuzhaigou County, Sichuan Province, China. The results show that the accuracy of the new method is 91.3%, which is 13.8% higher than the traditional U-Net model. It is proved that the new method is effective and feasible for the automatic extraction of post-earthquake landslides.
机译:地震山体滑坡是最常见且极具破坏性的地震触发地质灾害。它们的规模较大,在许多地方同时发生。因此,在地震之后快速获得滑坡信息是减灾和缓解的关键。调查结果表明,大多数滑坡信息提取方法涉及太多的手动参与,导致了低自动化程度,无法及时提供有效的地震信息。为了解决上述问题并提高滑坡鉴定的效率,提出了一种名为改进U-Net模型的自动滑坡识别方法。通过自动提取分层特征来实现地震后滑坡信息的智能提取。本文的主要创新包括以下内容:(1)在三个RGB频段的基础上,添加三个新频段,DSM,斜率和方面,具有空间信息,以及训练样本的特征参数的数量是增加。 (2)通过在上采样和下采样过程中添加残差学习单元来重建U-Net模型结构,以解决传统的U-Net模型不能完全提取六通道滑坡的特征的问题它的浅薄结构。在本文结束时,新方法用于中国四川省九寨沟县。结果表明,新方法的准确性为91.3%,比传统的U-净模型高13.8%。事实证明,新方法对于地震后山体滑坡自动提取是有效和可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号