首页> 外文OA文献 >Identify High-Impact Bug Reports by Combining the Data Reduction and Imbalanced Learning Strategies
【2h】

Identify High-Impact Bug Reports by Combining the Data Reduction and Imbalanced Learning Strategies

机译:通过组合数据减少和不平衡的学习策略来确定高影响错误报告

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As software systems become increasingly large, the logic becomes more complex, resulting in a large number of bug reports being submitted to the bug repository daily. Due to tight schedules and limited human resources, developers may not have enough time to inspect all the bugs. Thus, they often concentrate on the bugs that have large impacts. However, there are two main challenges limiting the automation technology that would help developers to become aware of high-impact bug reports early, namely, low quality and class distribution imbalance. To address these two challenges, we propose an approach to identify high-impact bug reports that combines the data reduction and imbalanced learning strategies. In the data reduction phase, we combine feature selection with the instance selection method to build a small-scale and high-quality set of bug reports by removing the bug reports and words that are redundant or noninformative; in the imbalanced learning strategies phase, we handle the imbalanced distributions of bug reports through four imbalanced learning strategies. We experimentally verified that the method of combining the data reduction and imbalanced learning strategies could effectively identify high-impact bug reports.
机译:随着软件系统越来越大,逻辑变得更加复杂,导致每天提交给Bug存储库的大量错误报告。由于时间表紧缩和有限的人力资源,开发人员可能没有足够的时间来检查所有的错误。因此,他们经常集中在具有巨大影响的虫子上。然而,有两个主要挑战限制了自动化技术,帮助开发人员早期意识到高影响力报告,即低质量和阶级分布不平衡。为了解决这两个挑战,我们提出了一种方法来确定结合数据减少和不平衡学习策略的高影响力报告。在数据缩减阶段,我们将特征选择与实例选择方法相结合,通过删除冗余或非信息性的错误报告和单词来构建小规模和高质量的错误报告;在不平衡的学习策略阶段,我们通过四个不平衡的学习策略处理错误报告的不平衡分布。我们通过实验验证了组合数据减少和不平衡学习策略的方法可以有效地识别高影响力的错误报告。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号