首页> 外文OA文献 >Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures
【2h】

Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures

机译:不同工作温度下聚合物电解质膜水电解电池的建模与实验分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, a simplified model of a Polymer Electrolyte Membrane (PEM) water electrolysis cell is presented and compared with experimental data at 60 °C and 80 °C. The model utilizes the same modelling approach used in previous work where the electrolyzer cell is divided in four subsections: cathode, anode, membrane and voltage. The model of the electrodes includes key electrochemical reactions and gas transport mechanism (i.e., H2, O2 and H2O) whereas the model of the membrane includes physical mechanisms such as water diffusion, electro osmotic drag and hydraulic pressure. Voltage was modelled including main overpotentials (i.e., activation, ohmic, concentration). First and second law efficiencies were defined. Key empirical parameters depending on temperature were identified in the activation and ohmic overpotentials. The electrodes reference exchange current densities and change transfer coefficients were related to activation overpotentials whereas hydrogen ion diffusion to Ohmic overvoltages. These model parameters were empirically fitted so that polarization curve obtained by the model predicted well the voltage at different current found by the experimental results. Finally, from the efficiency calculation, it was shown that at low current densities the electrolyzer cell absorbs heat from the surroundings. The model is not able to describe the transients involved during the cell electrochemical reactions, however these processes are assumed relatively fast. For this reason, the model can be implemented in system dynamic modelling for hydrogen production and storage where components dynamic is generally slower compared to the cell electrochemical reactions dynamics.
机译:本文提出了一种高分子电解质膜(PEM)水电解电池的简化模型,并与60℃和80℃的实验数据进行比较。该模型利用先前工作中使用的相同建模方法,其中电解槽电池分为四个小节:阴极,阳极,膜和电压。电极模型包括关键电化学反应和气体传输机制(即,H 2,O 2和H 2 O),而膜的模型包括物理机制,例如水扩散,电渗透阻力和液压。建模电压包括主过电位(即激活,欧姆,浓度)。定义了第一和第二律效率。在激活和欧姆的过电位中鉴定了根据温度的关键经验参数。电极参考交换电流密度和变化转移系数与激活过电位相关,而氢离子扩散到欧姆过电压。这些模型参数经过经验拟合,使得模型获得的偏振曲线预测了实验结果发现的不同电流的电压。最后,从效率计算中,显示在低电流密度下,电解槽电池从周围吸收热量。该模型不能描述在细胞电化学反应期间所涉及的瞬态,但是这些过程相对较快地假设。因此,与细胞电化学反应动态相比,该模型可以在系统动态建模中实现用于氢生产和储存的氢气生产和储存。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号