首页> 外文OA文献 >Identification of disease-distinct complex biomarker patterns by means of unsupervised machine-learning using an interactive R toolbox (Umatrix)
【2h】

Identification of disease-distinct complex biomarker patterns by means of unsupervised machine-learning using an interactive R toolbox (Umatrix)

机译:通过使用Interactive R工具箱(UMATRIX)通过无监督机器学习鉴定疾病独特的复杂生物标志物模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Background Unsupervised machine-learned analysis of cluster structures, applied using the emergent self-organizing feature maps (ESOM) combined with the unified distance matrix (U-matrix) has been shown to provide an unbiased method to identify true clusters. It outperforms classical hierarchical clustering algorithms that carry a considerable tendency to produce erroneous results. To facilitate the application of the ESOM/U-matrix method in biomedical research, we introduce the interactive R-based bioinformatics tool “Umatrix”, which enables valid identification of a biologically meaningful cluster structure in the data by training a Kohonen-type self-organizing map followed by interface-guided interactive clustering on the emergent U-matrix map. Results The ability to detect clinical relevant subgroups was applied to a data set comprising plasma concentrations of d = 25 lipid markers including endocannabinoids, lysophosphatidic acids, ceramides and sphingolipids acquired from n = 100 patients with Parkinson's disease and n = 100 controls. Following ESOM training, clear data structures in the high-dimensional data space were observed on the U-matrix, allowing separation of patients from controls almost perfectly. When the data structure was destroyed by Monte-Carlo random resampling, the U-matrix became unstructured and patients and controls were mixed. Obtained results are biologically plausible and supported by empirical evidence of a regulation of several classes of lipids in Parkinson's disease. Conclusions Sophisticated analysis of structures in biomedical data provides a basis for the mechanistic interpretation of the observations and facilitates subsequent analyses focusing on hypothesis testing. The freely available R library “Umatrix” provides an interactive tool for broader application of unsupervised machine learning on complex biomedical data.
机译:摘要背景无监督的机器学习的集群结构分析,使用紧急自组织特征映射(ESOM)与统一距离矩阵(U形矩阵)相结合,提供了一种识别真正群集的无偏见方法。它优于经典的分层聚类算法,其具有相当大的产生错误结果的趋势。为了便于在生物医学研究中应用ESOM / U形矩阵法,我们介绍了基于交互式的生物信息化工具“UMATRIX”,这使得通过培训Kohonen型自我来验证数据中的生物有意义的集群结构。组织地图,然后是出现U形矩阵地图上的界面引导的交互式聚类。结果检测临床相关亚组的能力施加到包括D = 25次脂质标记物的血浆浓度的数据集,包括从n = 100名帕金森病和N = 100次获取的N = 100名患者获得的内凸蛋白,透明磷脂酸,神经酰胺和鞘脂。在ESOM训练之后,在U形矩阵上观察到高维数据空间中的清晰数据结构,允许几乎完美地分离来自控制的患者。当Monte-Carlo随机重采样破坏数据结构时,U形矩阵变为非结构化,患者和对照被混合。获得的结果是生物学上的可言论,并通过帕金森病中少量脂质调节的经验证据来支持。结论生物医学数据中结构的复杂分析为观察结果的机械解释提供了基础,并促进了关注假设检测的后续分析。自由可用的R库“UMATRIX”提供了一种在复杂生物医学数据上更广泛地应用无监督机器学习的交互式工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号