首页> 外文OA文献 >Propulsion Technology Assessment: Science Enabling Technologies to Explore the Interstellar Medium
【2h】

Propulsion Technology Assessment: Science Enabling Technologies to Explore the Interstellar Medium

机译:推进技术评估:科学与支持技术探索星际媒体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As part of a larger effort led by the Keck Institute for Space Studies at the California Institute of Technology, the Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a study to assess what low-thrust advanced propulsion system candidates, existing and near term, could deliver a small, Voyager-like satellite to our solar system's heliopause, approximately 100 AU from the center of the sun, within 10 years and within a 2025 to 2035 launch window. The advanced propulsion system trade study consisted of three candidates, including a Magnetically Shielded Miniature (MaSMi) Hall thruster, a solar sail and an electric sail. Two aerial densities, and thus characteristic accelerations, 0.426 mm/s2 and 0.664 mm/s2, were analyzed for the solar sail option in order understand the impact of near and long term development of this technology. Similarly, two characteristic accelerations, 1 mm/s2 and 2 mm/s2, were also analyzed for the electric sail option in addition to tether quantities of 10 and 20, respectively, and individual tether length of 20 km. A second analysis was conducted to determine what existing solid rocket motor kick stage(s) would be required to provide additional thrust at various points in the trajectory, assuming an earth departure characteristic energy capability provided by a Space Launch System (SLS) Block 1B vehicle architecture carrying an 8.4 meter payload fairing. Two trajectory profiles were considered, including an escape trajectory using a Jupiter gravity assist (E-Ju), and an escape trajectory first performing a Jupiter gravity assist followed by an Oberth maneuver around the sun and an optional Saturn gravity assist (E-Ju-Su-Sa). The Oberth maneuver would need to be performed very close to the sun, wherein this study assumed a perihelion distance of approximately 11 solar radii, or 0.05 AU, away from the surface. The heat shield technology required to perform this type of ambitious maneuver was assumed to be similar to that of NASA's Solar Probe Plus mission, which is slated to launch in July 2018. With respect to a SLS Block 1B earth departure characteristic energy capability of 100 sq km/s2 for the E-Ju trajectory option, results indicated that compared to having no advanced propulsion system onboard, both the MaSMi Hall thruster and solar sail options subtract approximately 8 to 10 years from the total trip time while the electric sail outperforms all options by subtracting up to 20 years. With respect to an average kick stage velocity capability of 2.5 to 3.5 km/s at perihelion, the most sensitive segment of the E-Ju-Su-Sa trajectory option, results indicated that both the MaSMi Hall thrust and solar sail options only subtract 1 to 3 years from the total trip time whereas the electric sail again outperforms all other options by subtracting up to 5 years. In other words, if the Technology Readiness Level of an electric sail could be increased in time, this propulsion technology could not only enable a satellite to reach 100 AU in 10 years but it could potentially do so even faster. Completing such an ambitious mission in that short of a timespan would be very attractive to many as it would be well within the average career span of any of those involved.
机译:作为加州理工学院凯克空间研究所的较大努力的一部分,美国宇航局的乔治C.马歇尔空间飞行中心的先进概念办公室进行了一项研究,评估了低推力的先进推进系统候选人,现有的候选人近期,可以向我们的太阳系的高位卫星提供一只小型的航程,像太阳能系统的精神,从太阳中心大约100个au,10年内,在2025到2035的发射窗口。先进的推进系统贸易研究由三个候选人组成,包括磁屏蔽的微型(MASMI)霍尔推进器,太阳能帆和电动帆。为太阳帆选择分析了两种空中密度,从而进行了特征加速度,0.426mm / s2和0.664 mm / s2,以了解这项技术的近期和长期发展的影响。类似地,除了10和20的系绳之外,还分析了两个特征加速度,1mm / s2和2mm / s2,以及20km的单独系绳长度。第二分析,以确定哪些现有的固体火箭发动机踢阶段(一个或多个)将需要在轨迹的各个点提供额外的推力,假定由一个太空发射系统(SLS)块1B车辆提供接地出发特征能量能力携带8.4米有效载荷整流罩的架构。考虑了两个轨迹轮廓,包括使用JUPITER重力辅助(E-JU)的逃生轨迹,以及首先执行JUPITER重力辅助的逃逸轨迹,然后在阳光下进行奥伯斯动作和可选的土星重力辅助(E-JU- SU-SA)。奥伯斯动作需要非常接近太阳,其中这项研究假定了大约11个太阳半径的距离,或0.05 au,远离表面。旨在执行这种类型雄心勃勃的机动所需的热屏蔽技术与美国宇航局的太阳能探头加任务相似,即2018年7月推出。对于SLS块1B地球出发特性能量为100平方英尺公里/ S2为E-菊轨迹选项,结果表明,相比于船上没有先进的推进系统,无论是MaSMi霍尔推进器和太阳帆选项从总行程时间8至10年约减,而电力帆优于所有选项减少20年。关于在Perihelion的平均踢球阶段速度能力为2.5至3.5公里/秒,E-Ju-SU-SA轨迹选项的最敏感的部分,结果表明,MASMI霍尔推力和太阳能航行选项只减去1从总旅行时间到3年,而电动航线再次赢得所有其他选择,减少5年。换句话说,如果电动帆的技术准备水平可以及时增加,这种推进技术不仅可以在10年内使卫星达到100个AU,但它可能会更快地实现。完成这种雄心勃勃的使命,即少时的雄辩会对许多人来说非常有吸引力,因为在任何参与者的任何人的平均职业范围内都会很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号