首页> 外文OA文献 >On the Absence of Uniform Recovery in Many Real-World Applications of Compressed Sensing and the Restricted Isometry Property and Nullspace Property in Levels
【2h】

On the Absence of Uniform Recovery in Many Real-World Applications of Compressed Sensing and the Restricted Isometry Property and Nullspace Property in Levels

机译:在许多真实世界应用中的均匀恢复的情况下,压缩传感的许多实际应用以及水平的受限制的等距特性和零属性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The purpose of this paper is twofold. The first is to point out that the property of uniform recovery, meaning that all sparse vectors are recovered, does not hold in many applications where compressed sensing is successfully used. This includes fields like magnetic resonance imaging (MRI), nuclear magnetic resonance computerized tomography, electron tomography, radio interferometry, helium atom scattering, and fluorescence microscopy. We demonstrate that for natural compressed sensing matrices involving a level based reconstruction basis (e.g., wavelets), the number of measurements required to recover all $s$-sparse signals for reasonable $s$ is excessive. In particular, uniform recovery of all $s$-sparse signals is quite unrealistic. This realization explains why the restricted isometry property (RIP) is insufficient for explaining the success of compressed sensing in various practical applications. The second purpose of the paper is to introduce a new framework based on a generalized RIP and a generalized nullspace property that fit the applications where compressed sensing is used. We demonstrate that the shortcomings previously used to prove that uniform recovery is unreasonable no longer apply if we instead ask for structured recovery that is uniform only within each of the levels. To examine this phenomenon, a new tool, termed the “restricted isometry property in levels” (RIP$_L$) is described and analyzed. Furthermore, we show that with certain conditions on the RIP$_L$, a form of uniform recovery within each level is possible. Fortunately, recent theoretical advances made by Li and Adcock demonstrate the existence of large classes of matrices that satisfy the RIP$_L$. Moreover, such matrices are used extensively in applications such as MRI. Finally, we conclude the paper by providing examples that demonstrate the optimality of the results obtained.
机译:本文的目的是双重的。首先要指出的是,均匀恢复的属性(即所有稀疏向量都已恢复)在成功使用压缩感测的许多应用中并不适用。这包括磁共振成像(MRI),核磁共振计算机断层扫描,电子断层扫描,无线电干涉,氦原子散射和荧光显微镜等领域。我们证明,对于涉及基于水平的重建基础的自然压缩传感矩阵(例如小波),为合理的$ s $恢复所有$ s $-稀疏信号所需的测量数量过多。特别是,所有$ s $稀疏信号的统一恢复是非常不现实的。该认识解释了为什么受限制的等轴测特性(RIP)不足以解释压缩感测在各种实际应用中的成功。本文的第二个目的是介绍一个基于广义RIP和广义零空间属性的新框架,该框架适合使用压缩感知的应用。我们证明,如果以前我们要求仅在每个级别内进行统一的结构化恢复,则以前用于证明统一恢复不合理的缺点就不再适用。为了检查这种现象,描述并分析了一种称为“水平等距特性”(RIP $ _L $)的新工具。此外,我们表明,在RIP $ _L $上具有某些条件的情况下,可以在每个级别内进行均匀恢复的形式。幸运的是,Li和Adcock的最新理论进展证明存在满足RIP $ _L $的大型矩阵。而且,这样的矩阵广泛地用于诸如MRI的应用中。最后,我们通过提供示例来证明所获得结果的最优性来结束本文。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号