首页> 外文期刊>Applied and Computational Harmonic Analysis >A strong restricted isometry property, with an application to phaseless compressed sensing
【24h】

A strong restricted isometry property, with an application to phaseless compressed sensing

机译:强大的受限等距特性,可应用于无相压缩传感

获取原文
获取原文并翻译 | 示例

摘要

The many variants of the restricted isometry property (RIP) have proven to be crucial theoretical tools in the fields of compressed sensing and matrix completion. The study of extending compressed sensing to accommodate phaseless measurements naturally motivates a strong notion of restricted isometry property (SRIP), which we develop in this paper. We show that if A is an element of R-mxn satisfies SRIP and phaseless measurements vertical bar Ax(0)vertical bar = b are observed about a k-sparse signal x(0) is an element of R-n, then minimizing the l(1) norm subject to vertical bar Ax vertical bar = b recovers x(0) up to multiplication by a global sign. Moreover, we establish that the SRIP holds for the random Gaussian matrices typically used for standard compressed sensing, implying that phaseless compressed sensing is possible from O(k log(en/k)) measurements with these matrices via l(1) minimization over vertical bar Ax vertical bar = b. Our analysis also yields an erasure robust version of the Johnson Lindenstrauss Lemma. (C) 2015 Elsevier Inc. All rights reserved.
机译:受限等距特性(RIP)的许多变体已被证明是压缩感测和矩阵完成领域中至关重要的理论工具。扩展压缩感测以适应无相测量的研究自然激发了强烈的受限等距特性(SRIP)概念,这是我们在本文中提出的。我们证明,如果A是R-mxn的一个元素,且满足SRIP且无相测量,则在k稀疏信号中观察到垂直线Ax(0)垂直线= b x(0)是Rn的元素,则将l( 1)服从竖线的范数Ax竖线= b恢复x(0)直至乘以全局符号。此外,我们确定SRIP对于通常用于标准压缩传感的随机高斯矩阵成立,这意味着通过在垂直方向上的l(1)最小化,利用这些矩阵进行O(k log(en / k))测量,可以进行无相压缩传感bar Ax垂直线= b。我们的分析还得出了Johnson Lindenstrauss Lemma的擦除鲁棒版本。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号