首页> 外文OA文献 >Optimizing the Pairs-Trading Strategy Using Deep Reinforcement Learning with Trading and Stop-Loss Boundaries
【2h】

Optimizing the Pairs-Trading Strategy Using Deep Reinforcement Learning with Trading and Stop-Loss Boundaries

机译:利用交易和止损边界的深度加固学习优化对交易策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many researchers have tried to optimize pairs trading as the numbers of opportunities for arbitrage profit have gradually decreased. Pairs trading is a market-neutral strategy; it profits if the given condition is satisfied within a given trading window, and if not, there is a risk of loss. In this study, we propose an optimized pairs-trading strategy using deep reinforcement learning—particularly with the deep Q-network—utilizing various trading and stop-loss boundaries. More specifically, if spreads hit trading thresholds and reverse to the mean, the agent receives a positive reward. However, if spreads hit stop-loss thresholds or fail to reverse to the mean after hitting the trading thresholds, the agent receives a negative reward. The agent is trained to select the optimum level of discretized trading and stop-loss boundaries given a spread to maximize the expected sum of discounted future profits. Pairs are selected from stocks on the S&P 500 Index using a cointegration test. We compared our proposed method with traditional pairs-trading strategies which use constant trading and stop-loss boundaries. We find that our proposed model is trained well and outperforms traditional pairs-trading strategies.
机译:许多研究人员试图优化对交易,因为套利盈利的机会数量逐渐减少。对交易是市场中立策略;如果在给定的交易窗口中满足给定的条件,则IT利润,如果没有,则存在损失的风险。在这项研究中,我们提出了一种利用深度加强学习的优化对交易策略 - 特别是利用各种交易和止损界限的深度Q网络。更具体地说,如果传播命中交易阈值并反转到平均值,则代理商会收到积极奖励。但是,如果传播达到止损阈值或者在击中交易阈值后未能反转均值,则代理商会收到负奖励。该代理人受过培训,以选择可离散的交易和止损界限的最佳水平,因为蔓延至最大化未来利润的预期总和。使用协整测试,对S&P 500指数的股票选自库存。我们将提出的方法与传统的对交易策略进行了比较,该方法使用不断交易和止损界限。我们发现我们的拟议模式训练良好,优于传统的对交易策略。

著录项

  • 作者

    Taewook Kim; Ha Young Kim;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号