首页> 外文OA文献 >TimeSen2Crop: A Million Labeled Samples Dataset of Sentinel 2 Image Time Series for Crop-Type Classification
【2h】

TimeSen2Crop: A Million Labeled Samples Dataset of Sentinel 2 Image Time Series for Crop-Type Classification

机译:Timesen2Crop:百万标记的Sentinel 2个图像时间序列用于裁剪分类的图像时间序列

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article presents TimeSen2Crop, a pixel-based dataset made up of more than 1 million samples of Sentinel 2 time series (TSs) associated to 16 crop types. This dataset, publicly available, aims to contribute to the worldwide research related to the supervised classification of TSs of Sentinel 2 data for crop type mapping. TimeSen2Crop includes atmospherically corrected images and reports the snow, shadows, and clouds information per labeled unit. The provided TSs represent an agronomic year (i.e., period from one year's harvest to the next one for agricultural commodity) ranging from September 2017 to August 2018. To generate the dataset, the publicly available Austrian crop type map based on farmer's declarations has been considered. To ensure the selection of reliable labeled units from the map (i.e., pure pixels correctly associated to their labels), an automatic procedure for the extraction of the training set based on a multitemporal deep learning model has been defined. TimeSen2Crop also includes a TS of Sentinel 2 images acquired in the following agronomic year (i.e., from September 2018 to August 2019). These data are provided with the aim of attract more research activities for solving a typical challenge of the crop type mapping task: adapting multitemporal deep learning models to different year (domain adaptation). The design of the dataset is described along with a benchmark comparison of deep learning models for crop type mapping.
机译:本文介绍了超时2CROP,基于像素的数据集由与16种作物类型相关的Sentinel 2时间序列(TSS)的超过100万个样本组成。该数据集,公开可用的旨在为裁剪类型映射的Sentinel 2数据的监督分类有关的贡献。 Timesen2Crop包括大气校正的图像,并报告每个标记单元的雪,阴影和云信息。提供的TSS代表2017年9月至2018年8月的农产品一年收获的一年中的农艺年份(即从一年收获)。要产生基于农民宣言的公开奥地利作物类型地图。为了确保从地图中选择可靠的标记单元(即,与其标签正确相关的纯片像素),已经定义了基于多立体深度学习模型提取训练集的自动过程。 Timesen2crop还包括在以下农艺年份获得的Sentinel 2图像的TS(即,从2018年9月至2019年8月)。这些数据具有吸引更多的研究活动,以解决作物型映射任务的典型挑战:将多立体深度学习模型适应不同年(域适应)。描述了数据集的设计以及作物类型映射的深度学习模型的基准比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号