首页> 外文期刊>Sensors >Optimal Subset Selection of Time-Series MODIS Images and Sample Data Transfer with Random Forests for Supervised Classification Modelling
【24h】

Optimal Subset Selection of Time-Series MODIS Images and Sample Data Transfer with Random Forests for Supervised Classification Modelling

机译:监督分类建模的时间序列MODIS图像的最佳子集选择和带有随机森林的样本数据传输

获取原文

摘要

Nowadays, various time-series Earth Observation data with multiple bands are freely available, such as Moderate Resolution Imaging Spectroradiometer (MODIS) datasets including 8-day composites from NASA, and 10-day composites from the Canada Centre for Remote Sensing (CCRS). It is challenging to efficiently use these time-series MODIS datasets for long-term environmental monitoring due to their vast volume and information redundancy. This challenge will be greater when Sentinel 2–3 data become available. Another challenge that researchers face is the lack of in-situ data for supervised modelling, especially for time-series data analysis. In this study, we attempt to tackle the two important issues with a case study of land cover mapping using CCRS 10-day MODIS composites with the help of Random Forests’ features: variable importance, outlier identification. The variable importance feature is used to analyze and select optimal subsets of time-series MODIS imagery for efficient land cover mapping, and the outlier identification feature is utilized for transferring sample data available from one year to an adjacent year for supervised classification modelling. The results of the case study of agricultural land cover classification at a regional scale show that using only about a half of the variables we can achieve land cover classification accuracy close to that generated using the full dataset. The proposed simple but effective solution of sample transferring could make supervised modelling possible for applications lacking sample data.
机译:如今,可以自由获取具有多个波段的各种时间序列的地球观测数据,例如中分辨率成像光谱仪(MODIS)数据集,包括来自NASA的8天合成物和来自加拿大遥感中心(CCRS)的10天合成物。有效地使用这些时间序列MODIS数据集进行长期环境监测具有挑战性,因为它们的数量庞大且信息冗余。当Sentinel 2–3数据可用时,挑战将更大。研究人员面临的另一个挑战是缺乏用于监督建模的原位数据,尤其是时间序列数据分析。在这项研究中,我们尝试通过在随机森林功能的帮助下使用CCRS 10天MODIS复合材料进行土地覆盖制图的案例研究来解决这两个重要问题:可变重要性,离群值识别。可变重要性功能用于分析和选择时间序列MODIS影像的最佳子集,以进行有效的土地覆被制图;离群值识别功能用于将可用的样本数据从一年转移到相邻年份,以进行监督分类建模。区域规模的农业土地覆盖分类的案例研究结果表明,仅使用一半的变量,我们就可以达到土地覆盖分类精度,该精度接近于使用完整数据集生成的精度。所提出的简单但有效的样本传输解决方案可以为缺少样本数据的应用程序提供监督建模。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号