首页> 外文OA文献 >Discrimination of Rock Fracture and Blast Events Based on Signal Complexity and Machine Learning
【2h】

Discrimination of Rock Fracture and Blast Events Based on Signal Complexity and Machine Learning

机译:基于信号复杂性和机器学习的岩体骨折和爆破事件的辨别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The automatic discrimination of rock fracture and blast events is complex and challenging due to the similar waveform characteristics. To solve this problem, a new method based on the signal complexity analysis and machine learning has been proposed in this paper. First, the permutation entropy values of signals at different scale factors are calculated to reflect complexity of signals and constructed into a feature vector set. Secondly, based on the feature vector set, back-propagation neural network (BPNN) as a means of machine learning is applied to establish a discriminator for rock fracture and blast events. Then to evaluate the classification performances of the new method, the classifying accuracies of support vector machine (SVM), naive Bayes classifier, and the new method are compared, and the receiver operating characteristic (ROC) curves are also analyzed. The results show the new method obtains the best classification performances. In addition, the influence of different scale factor q and number of training samples n on discrimination results is discussed. It is found that the classifying accuracy of the new method reaches the highest value when q = 8–15 or 8–20 and n=140.
机译:由于类似的波形特性,岩石骨折和爆炸事件的自动辨别是复杂的并且具有挑战性。为了解决这个问题,本文提出了一种基于信号复杂性分析和机器学习的新方法。首先,计算不同比例因子的信号的置换熵值以反映信号的复杂性并构造成特征向量集。其次,基于特征向量集,应用作为机器学习手段的后传播神经网络(BPNN)来建立用于岩石骨折和爆炸事件的鉴别器。然后评估新方法的分类性能,比较了支持向量机(SVM),朴素贝叶斯分类器和新方法的分类精度,并分析了接收器操作特性(ROC)曲线。结果显示新方法获得最佳分类性能。此外,还讨论了不同刻度因子Q和训练样本N对辨别结果的影响。发现,当Q = 8-15或8-20和n = 140时,新方法的分类精度达到最高值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号