首页> 外文OA文献 >A Multi-Biometric System Based on Feature and Score Level Fusions
【2h】

A Multi-Biometric System Based on Feature and Score Level Fusions

机译:基于特征和得分水平融合的多生物识别系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In general, the information of multiple biometric modalities is fused at a single level, for example, score level or feature level. The recognition accuracy of a multimodal biometric system may not be improved by carrying fusion at a single level, since one matcher may provide a performance lower than that provided by other matchers. In view of this, we propose a new fusion scheme, referred to as the matcher performance-based (MPb) fusion scheme, in which the fusion is carried out at two levels, feature level, and score level, to improve the overall recognition accuracy. First, we consider the performance of the individual matchers in order to find out which of the modalities should be used for fusion at the feature level. Then, the selected modalities are fused at this level by utilizing their encoded features. Next, we fuse the score obtained from the feature-level fusion with that of the modality for which the performance is the highest. In order to carry out this fusion, a new normalization technique referred to as the overlap extrema-variation-based anchored min-max (OEVBAMM) normalization technique, is also proposed. By considering three modalities, namely, fingerprint, palmprint, and earprint, the performance of the proposed fusion scheme as well as that of the single level fusion scheme, both with various normalization and weighting techniques are evaluated in terms of a number of metrics. It is shown that the multi-biometric system based on the proposed fusion scheme provides the best performance when it employs the new normalization technique and the confidence-based weighting (CBW) method.
机译:通常,多个生物识别模型的信息在单个级别融合,例如,得分水平或特征级别。通过在单个级别携带融合,可以不提高多模式生物识别系统的识别精度,因为一个匹配器可以提供低于其他匹配器提供的性能的性能。鉴于此,我们提出了一种新的融合方案,称为基于匹配性能的(MPB)融合方案,其中融合在两个级别,特征级别和得分水平下进行,以提高整体识别准确性。首先,我们考虑各个匹配者的性能,以便在特征级别中找出应该使用哪种方式用于融合。然后,通过利用它们的编码特征,所选模式在此级别融合。接下来,我们融合了从特征级融合中获得的分数,其模态的性能最高。为了执行这种融合,还提出了一种新的归一化技术,称为重叠极值变化的锚定MIN-MAX(OEVBAMM)标准化技术。通过考虑三种方式,即指纹,掌纹和耳印,拟议的融合方案的性能以及单级融合方案的性能以及各种归一化和加权技术在许多指标方面评估。结果表明,基于所提出的融合方案的多生物识别系统在采用新的归一化技术和基于置信权重(CBW)方法时提供了最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号