For a family of graphs $cal F$, the $mathcal{F}$-Contraction problem takesas an input a graph $G$ and an integer $k$, and the goal is to decide if thereexists $S subseteq E(G)$ of size at most $k$ such that $G/S$ belongs to $calF$. Here, $G/S$ is the graph obtained from $G$ by contracting all the edges in$S$. Heggernes et al.~[Algorithmica (2014)] were the first to study edgecontraction problems in the realm of Parameterized Complexity. They studied$cal F$-Contraction when $cal F$ is a simple family of graphs such as treesand paths. In this paper, we study the $mathcal{F}$-Contraction problem, where$cal F$ generalizes the family of trees. In particular, we define thisgeneralization in a "parameterized way". Let $mathbb{T}_ell$ be the family ofgraphs such that each graph in $mathbb{T}_ell$ can be made into a tree bydeleting at most $ell$ edges. Thus, the problem we study is$mathbb{T}_ell$-Contraction. We design an FPT algorithm for$mathbb{T}_ell$-Contraction running in time$mathcal{O}((2sqrt(ell))^{mathcal{O}(k + ell)} cdot n^{mathcal{O}(1)})$.Furthermore, we show that the problem does not admit a polynomial kernel whenparameterized by $k$. Inspired by the negative result for the kernelization, wedesign a lossy kernel for $mathbb{T}_ell$-Contraction of size $mathcal{O}([k(k + 2ell)] ^{(lceil {rac{lpha}{lpha-1}ceil + 1)}})$.
展开▼
机译:对于一个家庭的图形$ cal f $,$ mathcal {f} $ - 收缩问题需要输入一个图形$ g $和整数$ k $,而目标是在推出$ s subseteq e (g)大小的大小为$ k $,使得$ g / s $属于$ calf $。在这里,$ g / s $是从$ g $获得的图表,通过以$ s $签订所有边缘。 Heggernes等人。〜[algorithmica(2014)]是第一个研究参数化复杂性领域的Edgecontraction问题。他们在$ cal f $时研究$ cal f $ -contraction,这是一个简单的图形,如树和路径。在本文中,我们研究了$ mathcal {f} $ - 收缩问题,其中$ cal f $概括树族。特别是,我们以“参数化方式”定义了这一项化。让$ mathbb {t} _ ell $ be frove,使得$ mathbb {t} _ ell $中的每个图形可以在大多数$ ell $边的树上进行。因此,我们研究的问题是$ mathbb {t} _ ell $ -conclation。我们为$ mathbb {t}设计了一个fpt算法_ ell $ - 在时间$ mathcal {o}运行运行((2 sqrt( sqrt))^ { mathcal {o}(k + ell) } cdot n ^ { mathcal {o}(1)})$。此外,我们表明问题不承认多项式内核,当时按美元k $。灵感来自封闭的负面结果,Wedesign是$ mathbb {t} _ ell $ -contraction的ride $ mathcal {o}([k(k(k + 2 el)] ^ {( lceil) { frac { alpha} { alpha-1} rceil + 1)}})$。
展开▼