首页> 外文OA文献 >The complexity of simulating local measurements on quantum systems
【2h】

The complexity of simulating local measurements on quantum systems

机译:模拟量子系统局部测量的复杂性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An important task in quantum physics is the estimation of local quantities for ground states of local Hamiltonians. Recently, [Ambainis, CCC 2014] defined the complexity class ${P}^{{QMA}[{log}]}$, and motivated its study by showing that the physical task of estimating the expectation value of a local observable against the ground state of a local Hamiltonian is ${P}^{{QMA}[{log}]}$-complete. In this paper, we continue the study of ${P}^{{QMA}[{log}]}$, obtaining the following lower and upper bounds.Lower bounds (hardness results): - The ${P}^{{QMA}[{log}]}$-completeness result of [Ambainis, CCC 2014] requires $O(log n)$-local observables and Hamiltonians. We show that simulating even a $extit{single qubit}$ measurement on ground states of $5$-local Hamiltonians is ${P}^{{QMA}[{log}]}$-complete, resolving an open question of Ambainis.- We formalize the complexity theoretic study of estimating two-point correlation functions against ground states, and show that this task is similarly ${P}^{{QMA}[{log}]}$-complete. - We identify a flaw in [Ambainis, CCC 2014] regarding a ${P}^{{UQMA}[{log}]}$-hardness proof for estimating spectral gaps of local Hamiltonians. By introducing a ``query validation'' technique, we build on [Ambainis, CCC 2014] to obtain ${P}^{{UQMA}[{log}]}$-hardness for estimating spectral gaps under polynomial-time Turing reductions. Upper bounds (containment in complexity classes): - ${P}^{{QMA}[{log}]}$ is thought of as ``slightly harder'' than QMA. We justify this formally by exploiting the hierarchical voting technique of [Beigel, Hemachandra, Wechsung, SCT 1989] to show ${P}^{{QMA}[{log}]}subseteq {PP}$. This improves the containment ${QMA}subseteq {PP}$ [Kitaev, Watrous, STOC 2000]. This work contributes a rigorous treatment of the subtlety involved in studying oracle classes in which the oracle solves a $promise$ problem. This is particularly relevant for quantum complexity theory, where most natural classes such as BQP and QMA are defined as promise classes.
机译:量子物理学中的一个重要任务是估计当地哈密顿人的地面州的局部数量。近来,当地汉密尔顿人的地面状态是$ {p} ^ {{qma} [{log}]} $ - 完成。在本文中,我们继续研究$ {p} ^ {{qma} [{log}]} $,获取以下较低和上限。下限(硬度结果): - $ {p} ^ {{qma} [{log}]} $ - [ambainis,ccc 2014]的完整性结果需要$ o( log n)$ - 本地可观察品和哈密顿人。我们表明,即使是$ 5 $ -local hamiltonians的地面状态也是在{单个qubit} $ measgion的{单qubit} $ {p} ^ {{qma} [{log}]} $ - 完整,解决ambainis的开放问题。 - 我们将复杂性理论研究正规化对地面统治的两点相关函数的复杂性学习研究,并显示此任务类似地是$ {P} ^ {{qma} [{log}]} $ - 完整。 - 我们在{p} ^ {{uqma} [{log}]} $ - 用于估算当地哈密顿人的光谱差距的硬度证明,识别出缺陷。通过介绍“查询验证”的技术,我们在[Ambainis,CCC 2014]上,获得$ {P} ^ {{uqma} [{log}]} $ - 用于估计多项式时间图标记下的光谱间隙的硬度。上限(复杂性课程中的遏制): - $ {p} ^ {{qma} [{log}]} $被认为是比qma为``略差'。我们通过利用[Beigel,Hemachandra,Wechsung,SCT 1989]的分层投票技术来证明这是正式的正式证明了这一点,以显示$ {p} ^ {{qma} [{log}]} subseteq {pp} $。这改善了{qma} subseteq {pp} $ [kitaev,watrous,stoc 2000]。这项工作促进了研究oracle课程所涉及的细节的严格处理,其中oracle解决了$承诺$问题。这与量子复杂性理论尤为重要,其中大多数自然类等级如BQP和QMA被定义为承诺类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号