首页> 外文OA文献 >Determining the long-term behavior of cell populations: A new procedure for detecting ergodicity in large stochastic reaction networks
【2h】

Determining the long-term behavior of cell populations: A new procedure for detecting ergodicity in large stochastic reaction networks

机译:确定细胞群的长期行为:一种用于在大型随机反应网络中检测ergodicity的新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A reaction network consists of a finite number of species, which interactthrough predefined reaction channels. Traditionally such networks were modeleddeterministically, but it is now well-established that when reactant copynumbers are small, the random timing of the reactions create internal noisethat can significantly affect the macroscopic properties of the system. Tounderstand the role of noise and quantify its effects, stochastic models arenecessary. In the stochastic setting, the population is described by aprobability distribution, which evolves according to a set of ordinarydifferential equations known as the Chemical Master Equation (CME). This set isinfinite in most cases making the CME practically unsolvable. In manyapplications, it is important to determine if the solution of a CME has aglobally attracting fixed point. This property is called ergodicity and itspresence leads to several important insights about the underlying dynamics. Thegoal of this paper is to present a simple procedure to verify ergodicity instochastic reaction networks. We provide a set of simple linear-algebraicconditions which are sufficient for the network to be ergodic. In particular,our main condition can be cast as a Linear Feasibility Problem (LFP) which isessentially the problem of determining the existence of a vector satisfyingcertain linear constraints. The inherent scalability of LFPs make our approachefficient, even for very large networks. We illustrate our procedure through anexample from systems biology.
机译:反应网络由有限数量的物种组成,这些物种通过预定的反应通道进行交互。传统上,这种网络是确定性地建模的,但是现在公认的是,当反应物拷贝数较小时,反应的随机时间会产生内部噪声,该噪声会严重影响系统的宏观特性。为了了解噪声的作用并量化其影响,必须使用随机模型。在随机情况下,总体由概率分布描述,概率分布根据一组称为化学主方程(CME)的常微分方程演化。在大多数情况下,此设置是无限的,实际上使CME无法解决。在许多应用中,确定CME的解决方案是否具有全局吸引点很重要。此属性称为遍历性,它的存在导致对基本动力学的一些重要见解。本文的目标是提出一种验证遍历性随机反应网络的简单程序。我们提供了一组简单的线性代数条件,这些条件足以使网络遍历。特别地,可以将我们的主要条件转换为线性可行性问题(LFP),这实际上是确定满足某些线性约束的向量存在的问题。 LFP固有的可扩展性使我们的方法变得高效,即使对于非常大的网络也是如此。我们通过一个系统生物学的例子来说明我们的程序。

著录项

  • 作者

    Ankit Gupta; Mustafa Khammash;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"english","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号