首页> 外文OA文献 >Pattern Recognition of Cognitive Load Using EEG and ECG Signals
【2h】

Pattern Recognition of Cognitive Load Using EEG and ECG Signals

机译:使用EEG和ECG信号进行认知负荷的模式识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The matching of cognitive load and working memory is the key for effective learning, and cognitive effort in the learning process has nervous responses which can be quantified in various physiological parameters. Therefore, it is meaningful to explore automatic cognitive load pattern recognition by using physiological measures. Firstly, this work extracted 33 commonly used physiological features to quantify autonomic and central nervous activities. Secondly, we selected a critical feature subset for cognitive load recognition by sequential backward selection and particle swarm optimization algorithms. Finally, pattern recognition models of cognitive load conditions were constructed by a performance comparison of several classifiers. We grouped the samples in an open dataset to form two binary classification problems: (1) cognitive load state vs. baseline state; (2) cognitive load mismatching state vs. cognitive load matching state. The decision tree classifier obtained 96.3% accuracy for the cognitive load vs. baseline classification, and the support vector machine obtained 97.2% accuracy for the cognitive load mismatching vs. cognitive load matching classification. The cognitive load and baseline states are distinguishable in the level of active state of mind and three activity features of the autonomic nervous system. The cognitive load mismatching and matching states are distinguishable in the level of active state of mind and two activity features of the autonomic nervous system.
机译:认知负载和工作记忆的匹配是有效学习的关键,学习过程中的认知努力具有可紧张的反应,可以在各种生理参数中量化。因此,通过使用生理措施探索自动认知负载模式识别是有意义的。首先,这项工作提取了33种常用的生理特征,以量化自主主义和中枢神经活动。其次,我们选择了通过顺序向后选择和粒子群优化算法来选择认知负载识别的关键特征子集。最后,通过若干分类器的性能比较构建认知载荷条件的模式识别模型。我们将样本分组为开放数据集以形成两个二进制分类问题:(1)认知负载状态与基线状态; (2)认知负载不匹配状态与认知载荷匹配状态。决策树分类器获得了96.3%的认知负载与基线分类的精度,并且支持向量机获得了97.2%的认知负载不匹配与认知负载匹配分类的精度。认知负荷和基线状态可区分在自主神经系统的活跃状态和三种活性特征的水平中。认知负载不匹配和匹配状态在自主神经系统的活跃状态和两种活性特征的水平中可区分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号