首页> 外文OA文献 >Multi-Sensor Data Fusion Algorithm Based on Trust Degree and Improved Genetics
【2h】

Multi-Sensor Data Fusion Algorithm Based on Trust Degree and Improved Genetics

机译:基于信任程度和改进遗传学的多传感数据融合算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Aiming at the problems of low data fusion precision and poor stability in greenhouse wireless sensor networks (WSNs), a multi-sensor data fusion algorithm based on trust degree and improved genetics is proposed. The original data collected by the sensor nodes are sent to the gateway through the sink node, and data preprocessing based on cubic exponential smoothing is performed at the gateway to eliminate abnormal data and noise data. In fuzzy theory, the range of membership functions is determined, according to this feature, the data fusion algorithm based on exponential trust degree is used to fuse the smooth data to avoid the absolute degree of mutual trust between data. In this paper, we have improved the crossover and mutation operations in the standard genetic algorithm, the variation is separated from the intersection, the chaotic sequence is used to determine the intersection, and the weakest single-point intersection is implemented to improve the convergence accuracy of the algorithm, weaken and avoid jitter problems during optimization. The chaotic sequence is used to mutate multiple genes in the chromosome to avoid premature algorithm maturity. Finally, the improved genetic algorithm is used to optimize the fusion estimation value. The experimental results show that the cubic exponential smoothing can significantly reduce the data fluctuation and improve the stability of the system. Compared with the commonly used data fusion algorithms such as arithmetic average method and adaptive weighting method, the data fusion algorithm based on trust degree and improved genetics has higher fusion precision. At the same time, the execution time of the algorithm is greatly reduced.
机译:针对温室无线传感器网络(WSNS)中低数据融合精度和稳定性差的问题,提出了一种基于信任程度和改进遗传学的多传感器数据融合算法。由传感器节点收集的原始数据通过宿节点发送到网关,并且基于立方指数平滑的数据预处理在网关中执行以消除异常数据和噪声数据。在模糊理论中,根据该特征确定隶属函数的范围,基于指数信任度的数据融合算法用于熔化平滑数据以避免数据之间的相互信任的绝对程度。在本文中,我们在标准遗传算法中改进了交叉和突变操作,该变化与交叉点分离,混沌序列用于确定交叉点,并实现最弱的单点交叉点以提高收敛准确性在优化期间,算法,削弱并避免抖动问题。混沌序列用于突变染色体中的多个基因,以避免早熟的算法成熟度。最后,改进的遗传算法用于优化融合估计值。实验结果表明,立方指数平滑会显着降低数据波动,提高系统的稳定性。与诸如算术平均方法和自适应加权方法的常用数据融合算法相比,基于信任程度和改进的遗传学的数据融合算法具有更高的融合精度。同时,算法的执行时间大大减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号