首页> 外文OA文献 >Application of a Hybrid Optimized BP Network Model to Estimate Water Quality Parameters of Beihai Lake in Beijing
【2h】

Application of a Hybrid Optimized BP Network Model to Estimate Water Quality Parameters of Beihai Lake in Beijing

机译:混合优化的BP网络模型在北京北海湖水质量估算水质参数中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nowadays, freshwater resources are facing numerous crises and pressures, resulting from both artificial and natural process, so it is crucial to predict the water quality for the department of water environment protection. This paper proposes a hybrid optimized algorithm involving a particle swarm optimization (PSO) and genetic algorithm (GA) combined BP neural network that can predict the water quality in time series and has good performance in Beihai Lake in Beijing. The data sets consist of six water quality parameters which include Hydrogen Ion Concentration (pH), Chlorophyll-a (CHLA), Hydrogenated Amine (NH4H), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), and electrical conductivity (EC). The performance of the model was assessed through the absolute percentage error ( A P E m a x ), the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination ( R 2 ). Study results show that the model based on PSO and GA to optimize the BP neural network is able to predict the water quality parameters with reasonable accuracy, suggesting that the model is a valuable tool for lake water quality estimation. The results show that the hybrid optimized BP model has a higher prediction capacity and better robustness of water quality parameters compared with the traditional BP neural network, the PSO-optimized BP neural network, and the GA-optimized BP neural network.
机译:如今,淡水资源面临着众多危机和压力,由人工和自然过程引起,因此预测水环境保护部的水质至关重要。本文提出了一种涉及粒子群优化(PSO)和遗传算法(GA)组合BP神经网络的混合优化算法,其可以预测时间序列中的水质,并在北京北海湖具有良好的性能。数据集包括六种水质参数,包括氢离子浓度(pH),叶绿素-A(CHLA),氢化胺(NH 4H),溶解氧(DO),生物化学需氧量(BOD)和电导率(EC)组成。通过绝对百分比误差(p e m a x)评估模型的性能,平均绝对百分比误差(mape),根均方误差(Rmse)和确定系数(R 2)。研究结果表明,基于PSO和GA优化BP神经网络的模型能够以合理的准确性预测水质参数,表明该模型是湖水质量估算的宝贵工具。结果表明,与传统的BP神经网络,PSO优化的BP神经网络和GA优化的BP神经网络相比,杂化优化的BP模型具有更高的预测能力和水质参数的更好的水质参数稳健性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号