首页> 外文OA文献 >Novel Condition Monitoring Method for Wind Turbines Based on the Adaptive Multivariate Control Charts and SCADA Data
【2h】

Novel Condition Monitoring Method for Wind Turbines Based on the Adaptive Multivariate Control Charts and SCADA Data

机译:基于自适应多变量控制图和SCADA数据的风力涡轮机新颖性调速方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel condition monitoring method based on the adaptive multivariate control charts and the supervisory control and data acquisition (SCADA) system is developed. Two types of control charts are adopted: one is the adaptive exponential weighted moving average (AEWMA) control chart for abnormal state detection, and the other is the multivariate exponential weighted moving average (MEWMA) control chart for anomaly location determination. Optimization procedures for these control charts are implemented to achieve minimum out-of-control average running length. Multivariate regression analysis is utilized to obtain the normal condition prediction model of wind turbine with fault-free SCADA data. After comparing the regression accuracy of several popular algorithms in the MRA, the random forest is adopted for feature selection and regression prediction. Various tests on the wind turbine with normal and abnormal states are conducted. The performance and robustness of various control charts are compared comprehensively. Compared with conventional control charts, the AEWMA control chart is more sensitive to the abnormal state and thus has a more effective anomaly identification ability and better robustness. It is shown that the MEWMA control chart combined with the out-of-limit number index can effectively locate and identify the abnormal component.
机译:开发了一种基于自适应多变量控制图的新型条件监测方法及监督控制和数据采集(SCADA)系统。采用两种类型的控制图:一个是用于异常状态检测的自适应指数加权移动平均(AEWMA)控制图,另一个是用于异常位置确定的多变量指数加权移动平均(MEWMA)控制图。实现这些控制图表的优化过程,以实现最小控制平均运行长度。多变量回归分析用于获得具有无故障SCADA数据的风力涡轮机的正常状态预测模型。在比较MRA中几种流行算法的回归准确度之后,采用了随机林进行了特征选择和回归预测。进行了具有正常和异常状态的风力涡轮机的各种测试。全面比较各种控制图表的性能和稳健性。与传统控制图相比,AEWMA控制图对异常状态更敏感,因此具有更有效的异常识别能力和更高的鲁棒性。结果表明,MEWMA控制图与限制性数字索引相结合,可以有效地定位和识别异常组件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号