首页> 外文OA文献 >Adaptive Tunning of All Parameters in a Multi-Swarm Particle Swarm Optimization Algorithm: An Application to the Probabilistic Traveling Salesman Problem
【2h】

Adaptive Tunning of All Parameters in a Multi-Swarm Particle Swarm Optimization Algorithm: An Application to the Probabilistic Traveling Salesman Problem

机译:多群粒子群优化算法中所有参数的自适应调整:概率旅行推销员问题的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One of the main issues in the application of a Particle SwarmOptimization (PSO) algorithm and of every evolutionary opti-mization algorithm is the finding of the suitable parameters ofthe algorithm. In this paper, we use a parameter free version of aMulti-Swarm PSO algorithm where random values are assignedin the initialization of all parameters (including the number ofswarms) of the algorithm and, then, during the iterations theparameters are optimized together and simultaneously with theoptimization of the objective function of the problem. This ideais used for the solution of the Probabilistic Traveling SalesmanProblem (PTSP). The PTSP is a variation of the classic Trav-eling Salesman Problem (TSP) and one of the most significantstochastic routing problems. In the PTSP, only a subset of poten-tial customers needs to be visited on any given instance of theproblem. The number of customers to be visited each time is arandom variable. The proposed algorithm is tested on numer-ous benchmark problems from TSPLIB with very satisfactoryresults. It is compared with other algorithms from the literature,and, mainly with a Multi-Swarm Particle Swarm Optimizationwith parameters calculated with a classic trial - and - error pro-cedure and they are the same for all instances.
机译:应用粒子群化(PSO)算法和每个进化光学元音算法的应用中的一个主要问题是找到算法的合适参数。在本文中,我们使用Amulti-Swarm PSO算法的参数自由版本,其中随机值被指定为算法的所有参数(包括所述字符数)的初始化,然后,在迭代期间,参数在一起优化并与优化一起优化并同时进行优化问题的目标函数。这个想法用于解决概率旅行推销商问题的解决方案(PTSP)。 PTSP是经典的Trav-Eling推销员问题(TSP)的变化和最显着的突然间的路由问题之一。在PTSP中,只需要访问Poten-Tial客户的子集。每次访问的客户数量是Arandom变量。该算法在具有非常令人满意的TroryResults的TSPLIB上的数值基准问题上进行了测试。与文献中的其他算法进行比较,主要是使用经典试验和错误Pro-Cedure计算的多群粒子群优化,并且它们对所有实例相同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号