首页> 外文OA文献 >FluoroCellTrack: An algorithm for automated analysis of high-throughput droplet microfluidic data
【2h】

FluoroCellTrack: An algorithm for automated analysis of high-throughput droplet microfluidic data

机译:荧光电池特点:一种用于高通量液滴微流体数据的自动分析算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High-throughput droplet microfluidic devices with fluorescence detection systems provide several advantages over conventional end-point cytometric techniques due to their ability to isolate single cells and investigate complex intracellular dynamics. While there have been significant advances in the field of experimental droplet microfluidics, the development of complementary software tools has lagged. Existing quantification tools have limitations including interdependent hardware platforms or challenges analyzing a wide range of high-throughput droplet microfluidic data using a single algorithm. To address these issues, an all-in-one Python algorithm called FluoroCellTrack was developed and its wide-range utility was tested on three different applications including quantification of cellular response to drugs, droplet tracking, and intracellular fluorescence. The algorithm imports all images collected using bright field and fluorescence microscopy and analyzes them to extract useful information. Two parallel steps are performed where droplets are detected using a mathematical Circular Hough Transform (CHT) while single cells (or other contours) are detected by a series of steps defining respective color boundaries involving edge detection, dilation, and erosion. These feature detection steps are strengthened by segmentation and radius/area thresholding for precise detection and removal of false positives. Individually detected droplet and contour center maps are overlaid to obtain encapsulation information for further analyses. FluoroCellTrack demonstrates an average of a ~92-99% similarity with manual analysis and exhibits a significant reduction in analysis time of 30 min to analyze an entire cohort compared to 20 h required for manual quantification.
机译:具有荧光检测系统的高通量液滴微流体器件由于其能够分离单细胞并调查复杂的细胞内动态而提供了与常规端点细胞术技术的若干优点。虽然实验液滴微流体领域具有显着进展,但互补软件工具的开发已滞后。现有量化工具具有限制,包括使用单个算法分析各种高通量液滴微流控数据的相互依存硬件平台或挑战。为了解决这些问题,开发了一种称为氟电池的一体化Python算法,并在三种不同的应用中测试其宽范围的效用,包括对药物,液滴跟踪和细胞内荧光的细胞响应的定量。该算法导入使用明亮场和荧光显微镜收集的所有图像,并分析它们以提取有用的信息。使用数学圆形Hough变换(CHT)检测液滴的两个平行步骤,而单个单元(或其他轮廓)被定义涉及边缘检测,扩张和腐蚀的各个颜色边界的一系列步骤检测。这些特征检测步骤通过分割和半径/区域阈值处理来加强,以精确地检测和去除误报。单独检测的液滴和轮廓中心地图重叠以获得进一步分析的封装信息。荧光素线图平均值与手动分析的平均相似性,并且在30分钟内显示出显着的分析时间,以分析整个群组,而手动量化需要20小时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号