首页> 外文OA文献 >Reinforcement Learning for Clinical Decision Support in Critical Care: Comprehensive Review
【2h】

Reinforcement Learning for Clinical Decision Support in Critical Care: Comprehensive Review

机译:临床决策支持的加固学习在重大关心中的支持:全面审查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BackgroundDecision support systems based on reinforcement learning (RL) have been implemented to facilitate the delivery of personalized care. This paper aimed to provide a comprehensive review of RL applications in the critical care setting. ObjectiveThis review aimed to survey the literature on RL applications for clinical decision support in critical care and to provide insight into the challenges of applying various RL models. MethodsWe performed an extensive search of the following databases: PubMed, Google Scholar, Institute of Electrical and Electronics Engineers (IEEE), ScienceDirect, Web of Science, Medical Literature Analysis and Retrieval System Online (MEDLINE), and Excerpta Medica Database (EMBASE). Studies published over the past 10 years (2010-2019) that have applied RL for critical care were included. ResultsWe included 21 papers and found that RL has been used to optimize the choice of medications, drug dosing, and timing of interventions and to target personalized laboratory values. We further compared and contrasted the design of the RL models and the evaluation metrics for each application. ConclusionsRL has great potential for enhancing decision making in critical care. Challenges regarding RL system design, evaluation metrics, and model choice exist. More importantly, further work is required to validate RL in authentic clinical environments.
机译:BackgroundDecistion支持基于强化学习(RL)的支持系统已经实施,以便于提供个性化护理。本文旨在在关键护理环境中对RL应用进行全面审查。客观的审查旨在调查RL应用程序的文献,以便在重大关注方面进行临床决策支持,并对应用各种RL模型的挑战提供洞察。方法网络对以下数据库进行了广泛的搜索:PubMed,Google Scholar,电气和电子工程研究所(IEEE),ScieCentirect,科学网络,医学文献分析和在线检索系统(Medline),以及Excerpta Medica数据库(EMBASE)。在过去10年(2010-2019)上发表的研究包括申请RL的关键护理。 ResultSwe包括21篇论文,发现RL已被用于优化药物的选择,药物给药和干预措施的时间以及针对个性化实验室值。我们进一步比较和对比每个应用程序的RL模型的设计和评估度量。结论rl有巨大的潜力,以提高批判性护理的决策。存在关于RL系统设计,评估度量和模型选择的挑战。更重要的是,需要进一步的工作来验证真实的临床环境中的RL。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号