首页> 外文OA文献 >Similarity Measure Learning in Closed-Form Solution for Image Classification
【2h】

Similarity Measure Learning in Closed-Form Solution for Image Classification

机译:图像分类闭合解决方案中的相似度测量学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Adopting a measure is essential in many multimedia applications. Recently, distance learning is becoming an active research problem. In fact, the distance is the natural measure for dissimilarity. Generally, a pairwise relationship between two objects in learning tasks includes two aspects: similarity and dissimilarity. The similarity measure provides different information for pairwise relationships. However, similarity learning has been paid less attention in learning problems. In this work, firstly, we propose a general framework for similarity measure learning (SML). Additionally, we define a generalized type of correlation as a similarity measure. By a set of parameters, generalized correlation provides flexibility for learning tasks. Based on this similarity measure, we present a specific algorithm under the SML framework, called correlation similarity measure learning (CSML), to learn a parameterized similarity measure over input space. A nonlinear extension version of CSML, kernel CSML, is also proposed. Particularly, we give a closed-form solution avoiding iterative search for a local optimal solution in the high-dimensional space as the previous work did. Finally, classification experiments have been performed on face databases and a handwritten digits database to demonstrate the efficiency and reliability of CSML and KCSML.
机译:采用措施在许多多媒体应用中至关重要。最近,远程学习正在成为积极的研究问题。事实上,距离是异化的自然措施。通常,学习任务中的两个对象之间的成对关系包括两个方面:相似性和不相似性。相似度测量为成对关系提供了不同的信息。然而,在学习问题中,相似性学习的注意力不受重视。在这项工作中,首先,我们提出了一般的相似性措施学习框架(SML)。另外,我们将广义类型的相关类型定义为相似度测量。通过一组参数,广义相关提供了用于学习任务的灵活性。基于该相似度测量,我们在SML框架下呈现了一种特定算法,称为相关性相似度测量学习(CSML),以学习对输入空间的参数化相似度测量。还提出了一个非线性扩展版CSML,内核CSML。特别是,我们提供封闭式解决方案,避免迭代搜索在先前的工作中的高维空间中的本地最佳解决方案。最后,在面部数据库和手写数字数据库上进行了分类实验,以展示CSML和KCSML的效率和可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号