首页> 外文期刊>International journal of computational vision and robotics >Effective image retrieval based on hybrid features with weighted similarity measure and query image classification
【24h】

Effective image retrieval based on hybrid features with weighted similarity measure and query image classification

机译:基于具有加权相似度度量和查询图像分类的混合特征的有效图像检索

获取原文
获取原文并翻译 | 示例

摘要

An effective image retrieval needs efficient extraction of low-level features, and for this various methods have been recently proposed. Most of these methods use the histogram or some variation for representing colour and other descriptors which require significant amount of space and extra similarity calculation. Here, an efficient content based image retrieval (CBIR) system is proposed, which is based on the fusion of chromaticity-colour moments, and colour co-occurrence-based small dimension features using inverse variance weighted similarity measure. In this measure, property of the varying weights reduces the effect of redundancy and effectively retrieves relevant images. In addition, this paper also proposes a supervised query image classification and retrieval model by filtering out irrelevant class images using multiclass SVM classifier. Basically, this model recovers the category of query images, and this successful categorisation of images significantly enhances the performance and searching time of retrieval system. Descriptive comparative analyses confirm the effectiveness of this work. We obtained 83.83% and 76.9% average precision for 12 and 20 images retrieval using weighted similarity measure together with 85.6% average precision and 84.4% recall for classification framework.
机译:有效的图像检索需要有效提取低级特征,为此,最近提出了各种方法。这些方法大多数都使用直方图或某些变化形式来表示颜色和其他描述符,这些描述符需要大量空间和额外的相似度计算。在此,提出了一种有效的基于内容的图像检索(CBIR)系统,该系统基于色度-色矩和使用逆方差加权相似度度量的基于颜色共现的小尺寸特征的融合。在这种措施中,权重的变化降低了冗余的影响并有效地检索了相关图像。此外,本文还提出了一种使用多类SVM分类器过滤掉无关类图像的监督查询图像分类和检索模型。基本上,该模型恢复了查询图像的类别,并且这种成功的图像分类大大提高了检索系统的性能和搜索时间。描述性比较分析证实了这项工作的有效性。我们使用加权相似性度量获得了12和20张图像的平均精度,分别为83.83%和76.9%,分类框架的平均精度为85.6%,召回率为84.4%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号