首页> 外文OA文献 >Subgrouping breast cancer patients based on immune evasion mechanisms unravels a high involvement of transforming growth factor-beta and decoy receptor 3
【2h】

Subgrouping breast cancer patients based on immune evasion mechanisms unravels a high involvement of transforming growth factor-beta and decoy receptor 3

机译:基于免疫逃避机制的亚组乳腺癌患者无缓解转化生长因子-β和诱饵受体3

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the era of immunotherapy and personalized medicine, there is an urgent need for advancing the knowledge of immune evasion in different cancer types and identifying reliable biomarkers that guide both therapy selection and patient inclusion in clinical trials. Given the differential immune responses and evasion mechanisms in breast cancer, we expect to identify different breast cancer groups based on their expression of immune-related genes. For that, we used the sequential biclustering method on The Cancer Genome Atlas RNA-seq breast cancer data and identified 7 clusters. We found that 77.4% of the clustered tumor specimens evade through transforming growth factor-beta (TGF-β) immunosuppression, 57.7% through decoy receptor 3 (DcR3) counterattack, 48.0% through cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and 34.3% through programmed cell death-1 (PD-1). TGF-β and DcR3 are potential novel drug targets for breast cancer immunotherapy. Targeting TGF-β and DcR3 may provide a powerful approach for treating breast cancer because 57.7% of patients overexpressed these two molecules. Furthermore, triple-negative breast cancer (TNBC) patients clustered equally into two subgroups: one with impaired antigen presentation and another with high leukocyte recruitment but four different evasion mechanisms. Thus, different TNBC patients may be treated with different immunotherapy approaches. We identified biomarkers to cluster patients into subgroups based on immune evasion mechanisms and guide the choice of immunotherapy. These findings provide a better understanding of patients' response to immunotherapies and shed light on the rational design of novel combination therapies.
机译:在免疫治疗和个性化医疗的时代,是推进免疫逃避的知识,在不同类型的癌症,并确定可靠的生物标志物指导治疗都选择和患者纳入临床试验的迫切需要。鉴于乳腺癌中的差异免疫应答和逃避机制,我们预计基于其免疫相关基因的表达来鉴定不同的乳腺癌组。为此,我们在癌症基因组Atlas RNA-SEQ乳腺癌数据上使用了序贯双板化方法,并确定了7个簇。我们发现77.4%的聚集肿瘤标本通过转化生长因子-β(TGF-β)免疫抑制,57.7%通过诱饵受体3(DCR3)反击,通过细胞毒性T淋巴细胞相关蛋白4(CTLA4),48.0%,通过编程细胞死亡-1(PD-1),34.3%。 TGF-β和DCR3是乳腺癌免疫疗法的潜在新药靶标。靶向TGF-β和DCR3可以提供一种治疗乳腺癌的强大方法,因为57.7%的患者过表达这两个分子。此外,三重阴性乳腺癌(TNBC)患者同等地聚集成两个亚组:抗原呈递受损,另一个具有高白细胞募集,但四种不同的逃避机制。因此,不同的TNBC患者可以用不同的免疫治疗方法治疗。我们将生物标志物鉴定为基于免疫逃避机制的亚组进行聚类患者,并指导免疫疗法的选择。这些调查结果可以更好地了解患者对免疫治疗的反应,并对新型组合疗法的合理设计进行脱落。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号