首页> 外文OA文献 >Effectiveness and cost-effectiveness of four different strategies for SARS-CoV-2 surveillance in the general population (CoV-Surv Study): a structured summary of a study protocol for a cluster-randomised, two-factorial controlled trial
【2h】

Effectiveness and cost-effectiveness of four different strategies for SARS-CoV-2 surveillance in the general population (CoV-Surv Study): a structured summary of a study protocol for a cluster-randomised, two-factorial controlled trial

机译:一般人群中SARS-COV-2监测的四种不同策略的有效性和成本效益(COV-SURV研究):集群随机化,双因子控制试验的研究议定书的结构概述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Objectives In this cluster-randomised controlled study (CoV-Surv Study), four different “active” SARS-CoV-2 testing strategies for general population surveillance are evaluated for their effectiveness in determining and predicting the prevalence of SARS-CoV-2 infections in a given population. In addition, the costs and cost-effectiveness of the four surveillance strategies will be assessed. Further, this trial is supplemented by a qualitative component to determine the acceptability of each strategy. Findings will inform the choice of the most effective, acceptable and affordable strategy for SARS-CoV-2 surveillance, with the most effective and cost-effective strategy becoming part of the local public health department’s current routine health surveillance activities. Investigating its everyday performance will allow us to examine the strategy’s applicability to real time prevalence prediction and the usefulness of the resulting information for local policy makers to implement countermeasures that effectively prevent future nationwide lockdowns. The authors would like to emphasize the importance and relevance of this study and its expected findings in the context of population-based disease surveillance, especially in respect to the current SARS-CoV-2 pandemic. In Germany, but also in many other countries, COVID-19 surveillance has so far largely relied on passive surveillance strategies that identify individuals with clinical symptoms, monitor those cases who then tested positive for the virus, followed by tracing of individuals in close contact to those positive cases. To achieve higher effectiveness in population surveillance and to reliably predict the course of an outbreak, screening and monitoring of infected individuals without major symptoms (about 40% of the population) will be necessary. While current testing capacities are also used to identify such asymptomatic cases, this rather passive approach is not suitable in generating reliable population-based estimates of the prevalence of asymptomatic carriers to allow any dependable predictions on the course of the pandemic. To better control and manage the SARS-CoV-2 pandemic, current strategies therefore need to be complemented by an active surveillance of the wider population, i.e. routinely conducted testing and monitoring activities to identify and isolate infected individuals regardless of their clinical symptoms. Such active surveillance strategies will enable more effective prevention of the spread of the virus as they can generate more precise population-based parameters during a pandemic. This essential information will be required in order to determine the best strategic and targeted short-term countermeasures to limit infection spread locally. Trial design This trial implements a cluster-randomised, two-factorial controlled, prospective, interventional, single-blinded design with four study arms, each representing a different SARS-CoV-2 testing and surveillance strategy. Participants Eligible are individuals age 7 years or older living in Germany’s Rhein-Neckar Region who consent to provide a saliva sample (all four arms) after completion of a brief questionnaire (two arms only). For the qualitative component, different samples of study participants and non-participants (i.e. eligible for study, but refuse to participate) will be identified for additional interviews. For these interviews, only individuals age 18 years or older are eligible. Intervention and comparator Of the four surveillance strategies to be assessed and compared, Strategy A1 is considered the gold standard for prevalence estimation and used to determine bias in other arms. To determine the cost-effectiveness, each strategy is compared to status quo, defined as the currently practiced passive surveillance approach. Strategy A1: Individuals (one per household) receive information and study material by mail with instructions on how to produce a saliva sample and how to return the sample by mail. Once received by the laboratory, the sample is tested for SARS-CoV-2 using Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP). Strategy A2: Individuals (one per household) receive information and study material by mail with instructions on how to produce their own as well as saliva samples from each household member and how to return these samples by mail. Once received by the laboratory, the samples are tested for SARS-CoV-2 using RT-LAMP. Strategy B1: Individuals (one per household) receive information by mail on how to complete a brief pre-screening questionnaire which asks about COVID-19 related clinical symptoms and risk exposures. Only individuals whose pre-screening score crosses a defined threshold, will then receive additional study material by mail with instructions on how to produce a saliva sample and how to return the sample by mail. Once received by the laboratory, the saliva sample is tested for SARS-CoV-2 using RT-LAMP. Strategy B2: Individuals (one per household) receive information by mail on how to complete a brief pre-screening questionnaire which asks about COVID-19 related clinical symptoms. Only individuals whose pre-screening score crosses a defined threshold, will then receive additional study material by mail with instructions how to produce their own as well as saliva samples from each household member and how to return these samples by mail. Once received by the laboratory, the samples are tested for SARS-CoV-2 using RT-LAMP. In each strategy, RT-LAMP positive samples are additionally analyzed with qPCR in order to minimize the number of false positives. Main outcomes The identification of the one best strategy will be determined by a set of parameters. Primary outcomes include costs per correctly screened person, costs per positive case, positive detection rate, and precision of positive detection rate. Secondary outcomes include participation rate, costs per asymptomatic case, prevalence estimates, number of asymptomatic cases per study arm, ratio of symptomatic to asymptomatic cases per study arm, participant satisfaction. Additional study components (not part of the trial) include cost effectiveness of each of the four surveillance strategies compared to passive monitoring (i.e. status quo), development of a prognostic model to predict hospital utilization caused by SARS-CoV-2, time from test shipment to test application and time from test shipment to test result, and perception and preferences of the persons to be tested with regard to test strategies. Randomisation Samples are drawn in three batches of three continuous weeks. Randomisation follows a two-stage process. First, a total of 220 sampling points have been allocated to the three different batches. To obtain an integer solution, the Cox-algorithm for controlled rounding has been used. Afterwards, sample points have been drawn separately per batch, following a probability proportional to size (PPS) random sample. Second, for each cluster the same number of residential addresses is randomly sampled from the municipal registries (self-weighted sample of individuals). The 28,125 addresses drawn per municipality are then randomly allocated to the four study arms A1, A2, B1, and B2 in the ratio 5 to 2.5 to 14 to 7 based on the expected response rates in each arm and the sensitivity and specificity of the pre-screening tool as applied in strategy B1 and B2. Based on the assumptions, this allocation should yield 2500 saliva samples in each strategy. Although a municipality can be sampled by multiple batches and the overall number of addresses per municipality might vary, the number of addresses contacted in each arm is kept constant. Blinding (masking) The design is single-blinded, meaning the staff conducting the SARS-CoV-2 tests are unaware of the study arm assignment of each single participant and test sample. Sample sizes Total sample size for the trial is 10,000 saliva samples equally allocated to the four study arms (i.e. 2,500 participants per arm). For the qualitative component, up to 60 in-depth interviews will be conducted with about 30 study participants (up to 15 in each arm A and B) and 30 participation refusers (up to 15 in each arm A and B) purposefully selected from the quantitative study sample to represent a variety of gender and ages to explore experiences with admission or rejection of study participation. Up to 25 asymptomatic SARS-CoV-2 positive study participants will be purposefully selected to explore the way in which asymptomatic men and women diagnosed with SARS-CoV-2 give meaning to their diagnosis and to the dialectic between feeling concurrently healthy and yet also being at risk for transmitting COVID-19. In addition, 100 randomly selected study participants will be included to explore participants’ perspective on testing processes and implementation. Trial Status Final protocol version is “Surveillance_Studienprotokoll_03Nov2020_v1_2” from November 3, 2020. Recruitment started November 18, 2020 and is expected to end by or before December 31, 2020. Trial registration The trial is currently being registered with the German Clinical Trials Register (Deutsches Register Klinischer Studien), DRKS00023271 ( https://www.drks.de/drks_web/navigate.do?navigationId=trial . HTML&TRIAL_ID=DRKS00023271). Retrospectively registered 30 November 2020. Full protocol The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.
机译:摘要目标在这项整群随机对照研究(CoV-Surv 研究)中,评估了四种不同的“主动”SARS-CoV-2 检测策略,用于一般人群监测,以确定和预测 SARS-CoV-2 感染流行率的有效性在给定的人群中。此外,还将评估四种监测策略的成本和成本效益。此外,该试验还辅以定性组件,以确定每种策略的可接受性。调查结果将为选择最有效、可接受和负担得起的 SARS-CoV-2 监测策略提供信息,最有效和最具成本效益的策略将成为当地公共卫生部门当前常规健康监测活动的一部分。调查其日常表现将使我们能够检查该策略对实时流行率预测的适用性以及由此产生的信息对当地政策制定者实施有效防止未来全国封锁的对策的有用性。作者想强调这项研究及其在基于人群的疾病监测背景下的预期结果的重要性和相关性,尤其是在当前的 SARS-CoV-2 大流行方面。在德国以及许多其他国家,迄今为止,COVID-19 监测在很大程度上依赖于被动监测策略,即识别具有临床症状的个体,监测那些随后检测出病毒呈阳性的病例,然后追踪密切接触者那些积极的案例。为了提高人口监测的有效性并可靠地预测爆发的过程,有必要对没有主要症状的感染者(约占人口的 40%)进行筛查和监测。虽然目前的检测能力也用于识别此类无症状病例,但这种相当被动的方法不适合生成可靠的基于人群的无症状携带者患病率估计值,以允许对大流行病程进行任何可靠的预测。因此,为了更好地控制和管理 SARS-CoV-2 大流行,当前的策略需要辅以对更广泛人群的积极监测,即定期进行检测和监测活动,以识别和隔离感染者,无论其临床症状如何。这种主动监测策略将能够更有效地预防病毒的传播,因为它们可以在大流行期间产生更精确的基于人群的参数。将需要这些基本信息,以确定最佳的战略和有针对性的短期对策,以限制感染在本地传播。试验设计 本试验采用整群随机、双因素对照、前瞻性、干预性、单盲设计,有四个研究组,每个组代表不同的 SARS-CoV-2 检测和监测策略。参与者 符合条件的是居住在德国莱茵-内卡地区的 7 岁或以上的人,他们同意在完成简短的问卷调查(仅两个组)后提供唾液样本(所有四个组)。对于定性部分,将确定研究参与者和非参与者(即符合研究条件,但拒绝参与)的不同样本进行额外访谈。对于这些采访,只有 18 岁或以上的人才有资格。干预和比较 在要评估和比较的四种监测策略中,策略 A1 被认为是流行率估计的黄金标准,并用于确定其他组的偏倚。为了确定成本效益,将每种策略与现状进行比较,现状被定义为当前采用的被动监视方法。策略 A1:个人(每户一个)通过邮件接收信息和研究材料,其中包含有关如何制作唾液样本以及如何通过邮件返回样本的说明。实验室收到样本后,将使用逆转录环介导的等温扩增 (RT-LAMP) 对样本进行 SARS-CoV-2 测试。策略 A2:个人(每个家庭一个)通过邮件接收信息和研究材料,其中包含有关如何从每个家庭成员那里制作自己的样本和唾液样本以及如何通过邮件返回这些样本的说明。实验室收到样本后,将使用 RT-LAMP 对样本进行 SARS-CoV-2 测试。策略 B1:个人(每户一个)通过邮件接收有关如何完成简短的预筛查问卷的信息,该问卷询问 COVID-19 相关的临床症状和风险暴露。只有预筛选分数超过规定阈值的个人才会通过邮件收到额外的研究材料,其中包含有关如何生产唾液样本以及如何通过邮件返回样本的说明。实验室收到后,将使用 RT-LAMP 对唾液样本进行 SARS-CoV-2 检测。策略 B2:个人iduals(每户一个)通过邮件收到有关如何完成简短的预筛查问卷的信息,该问卷询问 COVID-19 相关的临床症状。只有预筛选分数超过规定阈值的个人才会通过邮件收到额外的研究材料,其中包含如何制作自己的以及每个家庭成员的唾液样本以及如何通过邮件返回这些样本的说明。实验室收到样本后,将使用 RT-LAMP 对样本进行 SARS-CoV-2 测试。在每个策略中,RT-LAMP 阳性样本还使用 qPCR 进行分析,以尽量减少假阳性的数量。主要结果 确定一个最佳策略将由一组参数决定。主要结果包括每个正确筛查人员的成本、每个阳性病例的成本、阳性检出率和阳性检出率的精确度。次要结果包括参与率、每个无症状病例的成本、患病率估计值、每个研究组的无症状病例数、每个研究组的有症状病例与无症状病例的比率、参与者满意度。其他研究组成部分(不是试验的一部分)包括与被动监测(即现状)相比,四种监测策略中每一种的成本效益、预测由 SARS-CoV-2 引起的医院利用率的预后模型的开发、从测试开始的时间运送到测试应用程序和从测试运送到测试结果的时间,以及被测试人员对测试策略的看法和偏好。随机抽样分三批抽取,每三周连续抽取。随机化遵循两个阶段的过程。首先,共分配了 220 个采样点到三个不同的批次。为了获得整数解,使用了控制舍入的 Cox 算法。之后,按照与大小 (PPS) 随机样本成正比的概率,按批次分别抽取样本点。其次,对于每个集群,从市政登记处随机抽取相同数量的住宅地址(个人的自加权样本)。然后,根据每个组的预期响应率以及预试验的敏感性和特异性,将每个城市抽取的 28,125 个地址以 5 比 2.5 比 14 比 7 的比例随机分配到四个研究组 A1、A2、B1 和 B2。 - 在策略 B1 和 B2 中应用的筛选工具。根据假设,这种分配应该在每个策略中产生 2500 个唾液样本。尽管可以对一个自治市进行多批次抽样,并且每个自治市的地址总数可能会有所不同,但每个分支中联系的地址数量保持不变。盲(掩蔽)设计是单盲的,这意味着进行 SARS-CoV-2 测试的工作人员不知道每个参与者和测试样本的研究组分配。样本量 试验的总样本量是 10,000 个唾液样本,平均分配给四个研究组(即每组 2,500 名参与者)。对于定性部分,将有目的地从大约 30 名研究参与者(A 组和 B 组各最多 15 名)和 30 名参与拒绝者(A 组和 B 组各最多 15 名)中进行最多 60 次深度访谈。代表各种性别和年龄的定量研究样本,以探索接受或拒绝研究参与的经历。将有目的地选择多达 25 名无症状的 SARS-CoV-2 阳性研究参与者,以探索被诊断出患有 SARS-CoV-2 的无症状男性和女性如何赋予他们的诊断意义,以及如何在感觉同时健康与同时也被有传播 COVID-19 的风险。此外,还将包括 100 名随机选择的研究参与者,以探索参与者对测试过程和实施的看法。试验状态 最终协议版本为“Surveillance_Studienprotokoll_03Nov2020_v1_2”,自 2020 年 11 月 3 日起。招募于 2020 年 11 月 18 日开始,预计将于 2020 年 12 月 31 日或之前结束。试验注册 该试验目前正在德国临床试验注册中心(Deutsches Clinical Trials Register注册 Klinischer Studien),DRKS00023271(https://www.drks.de/drks_web/navigate.do?navigationId=trial。HTML&TRIAL_ID=DRKS00023271)。 2020 年 11 月 30 日追溯注册。 完整方案 完整方案作为附加文件附在附件中,可从试验网站(附加文件 1)访问。为了加快这种材料的传播速度,已经取消了熟悉的格式;这封信是对完整协议关键要素的总结。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号