首页> 外文OA文献 >An explicit closed-form solution for transverse and longitudinal vibration of beam with multi-directional elastic constraints under an arbitrary moving load
【2h】

An explicit closed-form solution for transverse and longitudinal vibration of beam with multi-directional elastic constraints under an arbitrary moving load

机译:用于在任意移动负载下具有多向弹性约束的横梁横向和纵向振动的明确闭合溶液

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Beams with elastic constraints are widely used in dynamic systems in engineering. A general explicit solution is presented here for the vibration of simple span beam with transverse, rotational and axial elastic boundary constraints due to an arbitrary moving load. The Euler-Bernoulli beam theory is adopted, in which the boundary constraints are treated as multi-directional boundary springs. After the modal analyses, the explicit closed-form solutions of transverse and axial vibration of the beam under a constant, sinusoidal and cosinoidal moving loads are obtained, respectively. And the vibration of a beam subjected to an arbitrary moving load is derived by the superposition of Fourier series. The current analytical solution is exact and can be applied in multiple engineering fields to obtain accurate structural vibrations. In numerical examples, the effects of the boundary springs on the natural frequencies, modes, deflection, bending moment and boundary reaction of the beam are studied in details. The effects of the number of terms in Fourier series of arbitrary moving load are also discussed.
机译:具有弹性约束的光束广泛用于工程中的动态系统。这里提出了一种通用的明确解决方案,用于由于任意移动负载而具有横向,旋转和轴向弹性边界约束的简单跨度光束的振动。采用Euler-Bernoulli光束理论,其中边界约束被视为多向边界弹簧。在模态分析之后,分别在恒定,正弦和粗荷载负载下分别获得横向和轴向振动的显式闭合溶液。并且通过傅立叶系列的叠加来导出经过任意移动负荷的梁的振动。目前的分析解决方案精确,可以应用于多个工程领域,以获得准确的结构振动。在数值示例中,详细地研究了梁的自然频率,模式,偏转,弯矩和边界反应的边界弹簧对梁的影响。还讨论了傅立叶系列任意移动负载中术语数量的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号