首页> 外文OA文献 >Analysis of Hannan consistent selection for Monte Carlo tree search in simultaneous move games
【2h】

Analysis of Hannan consistent selection for Monte Carlo tree search in simultaneous move games

机译:同时移动游戏中Monte Carlo树搜索的汉南一致选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Monte Carlo Tree Search (MCTS) has recently been successfully used to createstrategies for playing imperfect-information games. Despite its popularity,there are no theoretic results that guarantee its convergence to a well-definedsolution, such as Nash equilibrium, in these games. We partially fill this gapby analysing MCTS in the class of zero-sum extensive-form games withsimultaneous moves but otherwise perfect information. The lack of informationabout the opponent's concurrent moves already causes that optimal strategiesmay require randomization. We present theoretic as well as empiricalinvestigation of the speed and quality of convergence of these algorithms tothe Nash equilibria. Primarily, we show that after minor technicalmodifications, MCTS based on any (approximately) Hannan consistent selectionfunction always converges to an (approximate) subgame perfect Nash equilibrium.Without these modifications, Hannan consistency is not sufficient to ensuresuch convergence and the selection function must satisfy additional properties,which empirically hold for the most common Hannan consistent algorithms.
机译:Monte Carlo树搜索(MCT)最近已成功地用于创建不完美信息游戏的创建。尽管其受欢迎程度,但没有理论结果,可以保证其对这些游戏中的纳什均衡等统治的融合。我们部分地填补了这种Gapby分析MCT在零和广泛形式的游戏类别中,但其他方式完美的信息。缺乏信息缺陷对手的并发移动已经导致最佳策略需要随机化。我们展示了这些算法纳什均衡的速度和质量的理论上的理论上。主要是,我们表明,在轻微的技术编制剂之后,MCT基于任何(大约)汉南一致选择功能始终会聚到(近似)Subgame完美的Nash均衡。汉南一致性不足以确保融合,选择功能必须满足属性,凭借最常见的汉南一致算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号