首页> 外文OA文献 >Transition metal–catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry
【2h】

Transition metal–catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry

机译:过渡金属催化的烷基 - 烷基键形成:交叉耦合化学中的另一种尺寸

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

BACKGROUND: The development of useful new methods for the construction of carbon-carbon bonds has had an impact on the many scientific disciplines (including materials science, biology, and chemistry) that use organic compounds. Tremendous progress has been made in the past several decades in the creation of bonds between sp^2-hybridized carbons (e.g., aryl-aryl bonds), particularly through the use of transition metal catalysis. In contrast, until recently, advances in the development of general methods that form bonds between sp^3-hybridized carbons (alkyl-alkyl bonds) had been rather limited. A variety of approaches, such as classical S_N^2 reactions and transition metal catalysis, typically led to side reactions rather than the desired carbon-carbon bond formation. With transition metal catalysis, the unwanted but often facile β-hydride elimination of alkylmetal complexes presented a key impediment to efficient cross-coupling of alkyl electrophiles. ududIn the case of many alkyl-alkyl bonds, there is an additional challenge beyond construction of the carbon-carbon bond itself: controlling the stereochemistry at one or both carbons of the new bond. It is important to control the stereochemistry of organic molecules because of its influence on properties such as biological activity. ududEach of these two challenges is difficult to solve individually; addressing them simultaneously is even more demanding. Until recently, the methods for achieving alkyl-alkyl bond formation were comparatively limited in scope, typically involving the use of unhindered (e.g., primary) electrophiles and unhindered, highly reactive nucleophiles (e.g., Grignard reagents, which have relatively poor functional group compatibility). With respect to enantioconvergent reactions, there were virtually no examples. ududADVANCES: In recent years, it has been established that, through the action of an appropriate transition metal catalyst, it is possible to achieve a broad range of alkyl-alkyl bond-forming processes; nickel-based catalysts have proved to be especially effective. With respect to the electrophilic coupling partner, a wide range of secondary alkyl halides are now suitable. This has enabled the development of enantioconvergent reactions of readily available racemic secondary electrophiles. In view of the abundance of tertiary stereocenters in organic molecules, this is a noteworthy advance in synthesis. ududWith respect to the nucleophilic partner, alkylboron and alkylzinc reagents (Suzuki- and Negishi-type reactions, respectively) can now be used in a wide variety of alkyl-alkyl couplings, which greatly increases the utility of such processes, as these nucleophiles are more readily available and have much improved functional group compatibility relative to Grignard reagents. These new methods for alkyl-alkyl bond formation have been applied to the synthesis of natural products and other bioactive compounds. ududOUTLOOK: A number of major challenges remain. For example, with regard to the electrophilic coupling partner, there is a need to develop general methods that are effective for tertiary alkyl halides, including enantioconvergent processes. With regard to the nucleophilic partner, there is a need to discover more versatile catalysts that can use a wide range of hindered (e.g., secondary and tertiary) alkylmetal reagents, as well as to achieve a broad spectrum of enantioconvergent couplings of racemic nucleophiles. These advances can enable the doubly stereoconvergent coupling of a racemic electrophile with a racemic nucleophile. ududThe synthesis of alkyl-alkyl bonds is arguably the most important bond construction in organic synthesis. The ability to achieve this bond formation at will, as well as to control the product stereochemistry, would transform organic synthesis and empower the many scientists who use organic molecules. Recent work has provided evidence that transition metal catalysis can address this exciting challenge.
机译:背景:用于碳 - 碳键构建有用的新方法的发展已经对使用有机化合物的许多科学学科(包括材料科学,生物学,和化学)产生影响。了巨大的进步,在过去几十年已取得在创建SP ^ 2-杂化碳(例如,芳基 - 芳基键)之间的键,特别是通过使用过渡金属催化的。与此相反,直到最近,在普通方法的发展的进步的是SP ^之间形成键3杂化碳(烷基烷基键)已相当有限。多种方法,例如古典S_N ^ 2升的反应和过渡金属催化,通常导致副反应,而不是所期望的碳 - 碳键形成。在过渡金属催化,烷基金属配合物的不希望的,但往往容易β-氢消除提出了一个主要障碍烷基亲电子的有效的交叉耦合。 UD udIn的许多烷基 - 烷基键的情况下,没有超出施工碳 - 碳键本身的一个额外的挑战:控制在一个新的键的两个碳原子的立体化学或。重要的是控制诸如生物活性由于其对性能的影响的有机分子的立体化学是非常重要的。 UD 这两个挑战udEach很难单独解决;同时解决他们更加要求很高。直到最近,为了实现烷基烷基键形成方法的范围进行了比较的限制,典型地涉及使用无阻碍(例如,主)亲电和不受阻碍的,高度反应性的亲核体(例如,格氏试剂,其具有相对较差的官能团的相容性) 。对于反应对映,有几乎没有例子。 UD udADVANCES:近年来,已经建立的是,通过适当的过渡金属催化剂的作用,所以能够实现宽范围的烷基 - 烷基键形成过程;镍基催化剂已被证明是特别有效的。相对于亲电子偶联伴侣,广泛仲烷基卤化物现在合适的。这使得一应俱全外消旋二级亲电反应对映的发展。鉴于丰度在有机分子叔立构的,这是在合成一个值得注意的进步。 UD udWith尊重亲核伙伴,烷基硼和烷基锌现在可以在各种各样的烷基 - 烷基接头,从而大大增加了这种方法的实用性,因为这些中使用的试剂(分别Suzuki-和根岸型反应)亲核试剂是更容易获得和组兼容性相对于格氏试剂的功能已大为改善。对烷基 - 烷基键形成这些新的方法已经被应用到天然产物和其它生物活性的化合物的合成。 UD udOUTLOOK:一些重大的挑战依然存在。例如,相对于亲电子偶联伴侣,有必要开发一种可有效叔烷基卤化物,包括对映会聚过程的一般方法。关于亲核伙伴,有必要发现更通用的,可以使用一个宽范围的位阻(例如,仲和叔)烷基金属试剂,以及实现外消旋的亲核试剂偶联对映的广谱催化剂。这些进展可以使外消旋电体与外消旋亲核试剂双重stereoconvergent耦合。 UD udThe的烷基 - 烷基键合成可以说是最重要的键结构在有机合成中。实现随意此键的形成,以及用于控制产品的立体化学,的能力将变换有机合成和授权谁使用有机分子的许多科学家。最近的工作提供了证据,过渡金属催化能够解决这个令人兴奋的挑战。

著录项

  • 作者

    Junwon Choi; Gregory C. Fu;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号