首页> 外文OA文献 >Molecular engineering of side-chain liquid crystalline polymers by living polymerizations
【2h】

Molecular engineering of side-chain liquid crystalline polymers by living polymerizations

机译:侧链液晶聚合物通过活化聚合的分子工程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

“Living” anionic, cationic, metalloporphyrin and ring-opening metathesis polymerizations have been used to prepare well-defined side-chain liquid crystalline homopolymers, block and graft copolymers and statistical copolymers. This paper analyzes their successes and failures by reviewing the mechanistic aspects and experimental conditions of each type of polymerization, and identifies other classes of mesogenic monomers that could be polymerized in a controlled manner in the future. The emerging structure/property relationships are then identified using well-defined SCLCPs in which only one structural feature is varied while all others remain constant.The thermal transitions of liquid crystalline polymethacrylates, polynorbomenes and poly(viny1 ether)s reach their limiting values at less than 50 repeat units, which are generally equal to those of the corresponding infinite molecular weight polymers’lncreasing spacer length depresses the glass transition of SCLCPs, and consequently often uncovers mesophases that are not observed without a spacer. The crystalline melting of tactic SCLCPs also tends to decrease (with odd-even alternation) with increasing spacer length. Without additional order within the polymer backbone due to high tacticity, mesogenic side-chains generally do not crystallize until the spacer contains at least nine carbon atoms. As the flexibility of the polymer backbone increases, the glass transition temperature decreases, and the side chains are able to crystallize at shorter spacer lengths and form more ordered rr esophases. The isotropization temperature (Ti = ΔHi/ΔSi) also increases since the change in entropy decreases more rapidly than the change in enthalpy with increasing backbone flexibility. However, the mesogenic side groups of most highly tactic polymers, which are less flexible than the corresponding atactic polymers, are evidently in the proper configuration to crystallize and/or form ordered phases. If the mesogen density is taken into account, the increase in ΔHi and ΔSi per methylenic unit in the spacer are equivalent for a given mesophase, and increase as the order of the mesophase increases. The discontinuity and/or change in the slope of ΔΔHi/-CH2- and ΔΔSi/ -CH2- with a change in the type of mesophase can be used to confirm that a phase change has occurred with the addition or subtraction of one methylenic unit in the spacer of a homologous series.Model compounds corresponding to exactly one repeat unit of the polymer, or which take into account only the (appropriately substituted) mesogen and spacer, mimic the phase behavior of the corresponding SCLCPs well. The monomers themselves, which have chemical structures very different from that of the polymer backbone, are the least appropriate model compounds for most SCLCPs. The effect of polydispersity has not been clarified yet, although it may manifest itself in broad phase transitions if the broad polydispersity is accompanied by polydispersity in molecular architecture, and the molecular architectures are immiscible.Liquid crystalline block and graft copolymers microphase separate into classic morphologies, but with the mesogens within the liquid crystalline block organize anisotropically if the blocks are sufficiently long. Although the same mesophase is generally formed by the copolymers and homopolymer, the phase diagram is asymmetric and less ordered mesophases may result if spheres of the liquid crystalline block are dispersed in a matrix of the other block. The morphology and thermotropic behavior of diblock and ABA and BAB triblock copolymers of 2-(cholesteryloxycarbonyloxy)ethyl methacrylate and styrene are identical when the volume fraction of the blocks are equal. Statistical copolymers also require a minimum concentration of the mesogenic monomer to form a mesophase. The isotropization temperatures of statistical copolymers based on two mesogenic monomers whose homopolymers exhibit identical mesophases follow ideal solution behavior as a function of copolymer composition. Copolymers based on structural units which are not isomorphic do not exhibit their respective mesophases over the entire copolymer composition, and intermediate compositions may exhibit an entirely different phase.
机译:“活性”阴离子,阳离子,金属卟啉和开环复分解聚合用于制备明确定义的侧链液晶均聚物,嵌段和接枝共聚物和统计共聚物。本文通过审查各种聚合的机械方面和实验条件来分析其成功和失败,并鉴定其他类别的介性单体,其将来可以以受控方式聚合。然后使用明确定义的SCLCP来鉴定出现的结构/性能关系,其中仅在所有其他结构中变化,而所有其他结构保持恒定。液晶聚甲基丙烯酸酯,多毒烯烃和聚(VININ1醚)的热转变在较少的情况下达到限制值比50个重复单元,通常等于相应的无限分子量聚合物的卷积间隔长度抑制SCLCP的玻璃化转变,因此通常在没有间隔物的情况下未观察到的中间蛋白酶。触发ScLCPS的结晶熔化也倾向于降低(具有奇数甚至交替),随着间隔量的增加。由于高术术而没有在聚合物骨架内的额外顺序,介源侧链通常不会结晶,直到间隔物含有至少九个碳原子。随着聚合物骨架的柔韧性增加,玻璃化转变温度降低,并且侧链能够以较短的间隔物长度结晶并形成更令人有序的RR OSEoph酶。各等渗温度(Ti =ΔHi/ΔSi)也增加,因为熵的变化比随着骨干柔性的增加而变化更快地减少。然而,最高度触发的介质侧基于比相应的暂性聚合物更不柔韧,显然是在适当的构型中以结晶和/或形成有序相。如果考虑了脱介型密度,则每个亚甲基单元在间隔件中的ΔHi和ΔSi的增加是对给定的中间相酯的等同物,并且随着中间体增加的增加而增加。 ΔΔHi/ -CH2-和ΔδSi/ -CH2-斜率的不连续性和/或改变与中间相级类型的变化可用于确认在一个甲基单元的添加或减去发生相变同源系列的间隔物。与聚合物的恰好一个重复单元相对应的化合物,或者仅考虑(适当取代的)的脱蛋白,模拟相应SCLCP的相位行为。具有与聚合物主链非常不同的化学结构的单体本身是最合适的大多数SCLCP的化合物。尚未澄清多分散性的影响,尽管宽多分散性伴随着分子结构中的多分散性,但分子架构不混溶,但分子施工和接枝共聚物微相分开分开分化为经典形态的晶体,但是,如果块足够长,则液晶块内的霉菌组织各向异性地组织。尽管通常由共聚物和均聚物形成相同的中间相级,但是如果液晶块的球体分散在另一个块的基质中,则可以将相图是不对称的,并且可以产生更少的有序的中间蛋白酶。当嵌段的体积分数相等时,二嵌段和ABA和Bab三嵌段共聚物的二嵌段和ABA和Bab三嵌段共聚物的形态和热致行为是相同的。统计共聚物还需要最小浓度的介晶单体以形成中间相。基于两种介晶单体的统计共聚物的各等异化温度,其均聚物表现出相同的中间蛋白酶遵循理想的溶液行为作为共聚物组合物的函数。基于非同性恋的结构单元的共聚物在整个共聚物组合物上没有表现出它们各自的中间体组合物,中间体组合物可以表现出完全不同的相。

著录项

  • 作者

    C PUGH; A KISTE;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号