首页> 外文OA文献 >Discovering Class-Specific Pixels for Weakly-Supervised Semantic Segmentation
【2h】

Discovering Class-Specific Pixels for Weakly-Supervised Semantic Segmentation

机译:发现弱监督语义分割的特定类像素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose an approach to discover class-specific pixels for theweakly-supervised semantic segmentation task. We show that properly combiningsaliency and attention maps allows us to obtain reliable cues capable ofsignificantly boosting the performance. First, we propose a simple yet powerfulhierarchical approach to discover the class-agnostic salient regions, obtainedusing a salient object detector, which otherwise would be ignored. Second, weuse fully convolutional attention maps to reliably localize the class-specificregions in a given image. We combine these two cues to discover class-specificpixels which are then used as an approximate ground truth for training a CNN.While solving the weakly supervised semantic segmentation task, we ensure thatthe image-level classification task is also solved in order to enforce the CNNto assign at least one pixel to each object present in the image.Experimentally, on the PASCAL VOC12 val and test sets, we obtain the mIoU of60.8% and 61.9%, achieving the performance gains of 5.1% and 5.2% compared tothe published state-of-the-art results. The code is made publicly available.
机译:我们提出了一种方法来发现针对惊人监督的语义分段任务的特定类别的像素。我们表明,正确的组合和关注地图使我们能够获得能够毫读的可靠性提示,提高性能。首先,我们提出了一种简单而强大的主导地位方法来发现类别不可知的突出区域,获得突出的物体检测器,否则将被忽略。其次,泛威胁完全卷积注意映射以可靠地本地化给定图像中的类特定性。我们将这两个提示组合起来发现类特定极赞成,然后用作训练CNN的近似基础真理。虽然解决了弱监督的语义细分任务,但我们确保解决了图像级分类任务,以便实施CNNTO将至少一个像素分配给图像中存在的每个物体。在Pascal VOC12 VAL和测试组上,我们获得了MIOU60.8%和61.9%,实现了比较出版状态的5.1%和5.2%的性能增益 - 最现实的结果。该代码公开可用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号