首页> 外文OA文献 >Autonomous Underwater Monitoring System for Detecting Life on the Seabed by Means of Computer Vision Cloud Services
【2h】

Autonomous Underwater Monitoring System for Detecting Life on the Seabed by Means of Computer Vision Cloud Services

机译:通过计算机视觉云服务检测海底寿命的自主水下监测系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Autonomous underwater vehicles (AUVs) have increasingly played a key role in monitoring the marine environment, studying its physical-chemical parameters for the supervision of endangered species. AUVs now include a power source and an intelligent control system that allows them to autonomously carry out programmed tasks. Their navigation system is much more challenging than that of land-based applications, due to the lack of connected networks in the marine environment. On the other hand, due to the latest developments in neural networks, particularly deep learning (DL), the visual recognition systems can achieve impressive performance. Computer vision (CV) has especially improved the field of object detection. Although all the developed DL algorithms can be deployed in the cloud, the present cloud computing system is unable to manage and analyze the massive amount of computing power and data. Edge intelligence is expected to replace DL computation in the cloud, providing various distributed, low-latency and reliable intelligent services. This paper proposes an AUV model system designed to overcome latency challenges in the supervision and tracking process by using edge computing in an IoT gateway. The IoT gateway is used to connect the AUV control system to the internet. The proposed model successfully carried out a long-term monitoring mission in a predefined area of shallow water in the Mar Menor (Spain) to track the underwater Pinna nobilis (fan mussel) species. The obtained results clearly justify the proposed system’s design and highlight the cloud and edge architecture performances. They also indicate the need for a hybrid cloud/edge architecture to ensure a real-time control loop for better latency and accuracy to meet the system’s requirements.
机译:自主水下车辆(AUV)越来越多地发挥了监测海洋环境的关键作用,研究其用于监督濒危物种的物理化学参数。 AUV现在包括电源和智能控制系统,允许它们自主地执行编程任务。由于海洋环境中缺乏连接的网络,他们的导航系统比基于陆基应用程序更具挑战性。另一方面,由于神经网络的最新发展,特别是深度学习(DL),视觉识别系统可以实现令人印象深刻的性能。计算机视觉(CV)特别改善了物体检测领域。虽然可以在云中部署所有开发的DL算法,但是当前云计算系统无法管理和分析大量的计算能力和数据。预计Edge Intelligence将替换云中的DL计算,提供各种分布式,低延迟和可靠的智能服务。本文提出了一种AUV模型系统,旨在通过在IOT网关中使用边缘计算来克服监督和跟踪过程中的延迟挑战。 IOT网关用于将AUV控制系统连接到Internet。该拟议模型成功地在Mar Menor(西班牙)的浅水中的预定义区域中进行了长期监测任务,以跟踪水下Pinna Nobilis(风扇贻贝)物种。所获得的结果明确证明了所提出的系统的设计,突出云和边缘架构表演。它们还表明需要混合云/边缘架构,以确保实时控制回路,以实现更好的延迟和准确性,以满足系统的要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号