首页> 外文OA文献 >Numerical and Experimental Investigation of Laminar One-Dimensional Counter-Flow Flames Using Product Gas From Pyrolysis and Gasification of Woody Biomass
【2h】

Numerical and Experimental Investigation of Laminar One-Dimensional Counter-Flow Flames Using Product Gas From Pyrolysis and Gasification of Woody Biomass

机译:采用木质生物质热解和气化的产品气体的层流二维反流火焰的数值和实验研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Further advances in the utilization of biomass-based gaseous fuels in combustion systems require a deeper understanding of the combustion chemistry behind, as well as of the coupling of the chemistry with physical phenomena such as turbulence. The former is investigated in the present study combining both experiments with numerical simulations of different types of laminar non-premixed flames (sooting and non-sooting) in a counter-flow setup. The focus is put on synthetic gas mixtures, resembling, to different extents, typical compositions of the product gas obtained in biomass gasification consisting of CH4 (reference) and CH4 mixed with CO2, N2, O2, and/or H2, always. The oxidizer in all cases is air. A wide range of air-fuel ratios is considered. The influence of the product gas composition on the flame behaviour and flame structure with respect to the changes of the species profiles and peak temperatures with changing flow velocities is discussed. Laser-based spectroscopy techniques, in particular laser-induced Rayleigh scattering and laser-induced fluorescence (LIF), are applied as diagnostic tools. The former can provide an accurate understanding of temperature distributions, while the latter helps to identify the flame front through the tracking of intermediate species, such as CH2O (formaldehyde). Additionally, CH* chemiluminescence contributes to localize the flame front. Lastly, the influence of the N2-shroud flow velocities and diameters, as well as resulting buoyancy effects due to a raise in temperature, are taken into account. In correspondence to these experiments, the flames are numerically simulated by an in-house time-dependent implicit Fortran code.
机译:在燃烧系统中利用生物质基气体燃料的进一步进展需要更深入地了解后面的燃烧化学,以及用物理现象(如湍流)的化学耦合。在本研究中研究了前者在反流装置中将具有不同类型的层状非预混火焰(烟灰和非烟灰)的数值模拟的实验组合。将重点放在合成气体混合物上,类似于不同的范围,典型的典型组合物,其生物质气化中获得的产物气体,总是与CO 2,N 2,O 2和/或H 2混合的CH 4(参考)和CH 4。所有情况下的氧化剂都是空气。考虑广泛的空气燃料比。讨论了产物气体组合物对火焰行为和火焰结构相对于物质曲线的变化和具有变化的流速变化的峰温度的影响。基于激光的光谱技术,特别是激光诱导的瑞利散射和激光诱导的荧光(LiF)作为诊断工具。前者可以提供对温度分布的准确理解,而后者有助于通过跟踪中间物种,例如CH 2 O(甲醛)识别火焰前沿。此外,CH *化学发光有助于定位火焰前部。最后,考虑了N2-护罩流速和直径的影响,以及导致温度升高引起的浮力效应。在对应于这些实验中,通过内部时间依赖的隐式Fortran代码进行数值模拟火焰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号