首页> 外文OA文献 >Dielectric constant of the polarizable dipolar hard sphere fluid studied by Monte Carlo simulation and theories
【2h】

Dielectric constant of the polarizable dipolar hard sphere fluid studied by Monte Carlo simulation and theories

机译:蒙特卡罗模拟和理论研究可极化的偶极硬球流体的介电常数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A systematic Monte Carlo (MC) simulation and perturbation theoreticalud (PT) study is reported for the dielectric constant of the polarizable dipolarud hard sphere (PDHS) fluid. We take the polarizability of the moleculesud into account in two different ways. In a continuum approach we place theud permanent dipole of the molecule into a sphere of dielectric constant Ɛ∞ud in the spirit of Onsager. The high frequency dielectric constant Ɛ∞ is calculatedud from the Clausius-Mosotti relation, while the dielectric constant ofud the polarizable fluid is obtained from the Kirkwood-Frohlich equation. In the molecular approach, the polarizability is built into the model on the molecularud level, which makes the interactions non- pairwise additive. Here weud use Wertheim’s renormalized PT method to calculate the induced dipoleud moment, while the dielectric constant is calculated from our recently introducedud formula [22]. We also apply a series expansion for the dielectricud constant both in the continuum and the molecular approach. These seriesud expansions ensure a better agreement with simulation results. The agreementud between our MC data and the PT results in the molecular approachud is excellent for low to moderate dipole moments and polarizabilities. Atud stronger dipolar interactions ergodicity problems and anizotropic behaviourud appear where simulation results become uncertain and the theoretical approachud becomes invalid.
机译:报道了可极化的双极硬球(PDHS)流体的介电常数,进行了系统的蒙特卡洛(MC)模拟和微扰理论 ud(PT)研究。我们以两种不同的方式考虑了分子的极化率。在连续方法中,我们按照Onsager的精神将分子的 ud永久偶极子置于介电常数Ɛ∞ ud的球体中。从克劳修斯-莫索蒂(Clausius-Mosotti)关系式计算出高频介电常数Ɛ∞,而从柯克伍德-弗罗里希(Kirkwood-Frohlich)方程获得极化流体的介电常数。在分子方法中,极化率是在分子 ud水平上内置到模型中的,这使相互作用成为非成对加性的。在这里,我们使用Wertheim的归一化PT方法来计算感应偶极矩,而介电常数是根据我们最近引入的ud公式计算的[22]。在连续体和分子方法中,我们还对介电常数ud进行了级数展开。这些系列 ud扩展可确保与仿真结果更好地吻合。在分子方法中,MC数据与PT结果之间的一致性 ud对于低至中等的偶极矩和极化率极好。在模拟结果变得不确定且理论方法无效的情况下,出现了更强的偶极相互作用遍历性问题和各向异性行为。

著录项

  • 作者

    Valisko M.; Boda D.;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号