首页> 外文OA文献 >Alignment-free method for functional annotation of amino acid substitutions: Application on epigenetic factors involved in hematologic malignancies
【2h】

Alignment-free method for functional annotation of amino acid substitutions: Application on epigenetic factors involved in hematologic malignancies

机译:用于氨基酸取代的功能注释的无比定方法:在血液学恶性肿瘤中的表观遗传因素应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For the last couple of decades, there has been a significant growth in sequencing data, leading to an extraordinary increase in the number of gene variants. This places a challenge on the bioinformatics research community to develop and improve computational tools for functional annotation of new variants. Genes coding for epigenetic regulators have important roles in cancer pathogenesis and mutations in these genes show great potential as clinical biomarkers, especially in hematologic malignancies. Therefore, we developed a model that specifically focuses on these genes, with an assumption that it would outperform general models in predicting the functional effects of amino acid substitutions. EpiMut is a standalone software that implements a sequence based alignment-free method. We applied a two-step approach for generating sequence based features, relying on the biophysical and biochemical indices of amino acids and the Fourier Transform as a sequence transformation method. For each gene in the dataset, the machine learning algorithm-Naïve Bayes was used for building a model for prediction of the neutral or disease-related status of variants. EpiMut outperformed state-of-the-art tools used for comparison, PolyPhen-2, SIFT and SNAP2. Additionally, EpiMut showed the highest performance on the subset of variants positioned outside conserved functional domains of analysed proteins, which represents an important group of cancer-related variants. These results imply that EpiMut can be applied as a first choice tool in research of the impact of gene variants in epigenetic regulators, especially in the light of the biomarker role in hematologic malignancies. EpiMut is freely available at https://www.vin.bg.ac.rs/180/tools/epimut.php.
机译:在过去几十年中,序列数据存在显着增长,导致基因变异数量的非凡增加。这对生物信息学研究界进行了挑战,开发和改进新变种功能注释的计算工具。编码表观遗传调节剂的基因在癌症发病机制中具有重要作用,这些基因的突变显示出巨大的潜力作为临床生物标志物,特别是在血液学恶性肿瘤中。因此,我们开发了一种专门专注于这些基因的模型,假设它会超越通用模型在预测氨基酸取代的功能效果方面。 eBimut是一种独立的软件,它实现了一种基于序列的无序方法。我们应用了一种用于产生序列的特征的两步方法,依靠氨基酸的生物物理和生化指数和傅里叶变换作为序列变换方法。对于数据集中的每个基因,机器学习算法-Naïve贝叶斯用于建立用于预测变形的中性或疾病相关状态的模型。互相表现出用于比较,多酚2,SIFT和SNAP2的最先进的工具。另外,互联网模拟显示了位于分析的蛋白质外部保护功能域的变体子集上的最高性能,这代表了一组重要的癌症相关变体。这些结果意味着依据可以应用于研究表观遗传调节剂基因变体的影响的第一选择工具,特别是根据血液学恶性肿瘤中的生物标志物作用。 eBimut在https://www.vin.bg.ac.rs/180/tools/epimut.php上自由使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号