首页> 外文OA文献 >Automatic Curve Fitting Based on Radial Basis Functions and a Hierarchical Genetic Algorithm
【2h】

Automatic Curve Fitting Based on Radial Basis Functions and a Hierarchical Genetic Algorithm

机译:基于径向基函数的自动曲线拟合及分层遗传算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Curve fitting is a very challenging problem that arises in a wide variety of scientific and engineering applications. Given a set of data points, possibly noisy, the goal is to build a compact representation of the curve that corresponds to the best estimate of the unknown underlying relationship between two variables. Despite the large number of methods available to tackle this problem, it remains challenging and elusive. In this paper, a new method to tackle such problem using strictly a linear combination of radial basis functions (RBFs) is proposed. To be more specific, we divide the parameter search space into linear and nonlinear parameter subspaces. We use a hierarchical genetic algorithm (HGA) to minimize a model selection criterion, which allows us to automatically and simultaneously determine the nonlinear parameters and then, by the least-squares method through Singular Value Decomposition method, to compute the linear parameters. The method is fully automatic and does not require subjective parameters, for example, smooth factor or centre locations, to perform the solution. In order to validate the efficacy of our approach, we perform an experimental study with several tests on benchmarks smooth functions. A comparative analysis with two successful methods based on RBF networks has been included.
机译:曲线拟合是一个非常具有挑战性的问题,在各种科学和工程应用中出现。给定一组数据点,可能嘈杂,目标是构建曲线的紧凑表示,该曲线对应于两个变量之间未知底层关系的最佳估计。尽管有大量的方法可以解决这个问题,但它仍然挑战和难以捉摸。在本文中,提出了一种使用严格的径向基函数(RBF)的线性组合来解决此类问题的新方法。更具体地,我们将参数搜索空间划分为线性和非线性参数子空间。我们使用分层遗传算法(HGA)来最小化模型选择标准,其允许我们自动并同时通过奇异值分解方法通过最小二乘法自动确定非线性参数,以计算线性参数。该方法完全自动,不需要主观参数,例如平滑因子或中心位置,以执行解决方案。为了验证我们的方法的功效,我们对基准函数的几次测试进行了实验研究。包括基于RBF网络的两种成功方法的比较分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号