首页> 外文OA文献 >A pattern learning-based method for temporal expression extraction and normalization from multi-lingual heterogeneous clinical texts
【2h】

A pattern learning-based method for temporal expression extraction and normalization from multi-lingual heterogeneous clinical texts

机译:基于模式学习的临时表达提取和来自多语言异构临床文本的归一化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Background Temporal expression extraction and normalization is a fundamental and essential step in clinical text processing and analyzing. Though a variety of commonly used NLP tools are available for medical temporal information extraction, few work is satisfactory for multi-lingual heterogeneous clinical texts. Methods A novel method called TEER is proposed for both multi-lingual temporal expression extraction and normalization from various types of narrative clinical texts including clinical data requests, clinical notes, and clinical trial summaries. TEER is characterized as temporal feature summarization, heuristic rule generation, and automatic pattern learning. By representing a temporal expression as a triple , TEER identifies temporal mentions M, assigns type attributes A to M, and normalizes the values of M into formal representations N. Results Based on two heterogeneous clinical text datasets: 400 actual clinical requests in English and 1459 clinical discharge summaries in Chinese. TEER was compared with six state-of-the-art baselines. The results showed that TEER achieved a precision of 0.948 and a recall of 0.877 on the English clinical requests, while a precision of 0.941 and a recall of 0.932 on the Chinese discharge summaries. Conclusions An automated method TEER for multi-lingual temporal expression extraction was presented. Based on the two datasets containing heterogeneous clinical texts, the comparison results demonstrated the effectiveness of the TEER method in multi-lingual temporal expression extraction from heterogeneous narrative clinical texts.
机译:摘要背景临床文本处理和分析中的临时表达提取和正常化是一个基本和基本的步骤。虽然各种常用的NLP工具可用于医疗时间信息提取,但对于多语言异构临床文本而言,很少有工作令人满意。方法提出了一种新的方法,提出了一种来自各种类型的叙事临床文本的多语言时间表达提取和标准化,包括临床资料请求,临床记录和临床试验摘要。 TEER的特征是时间特征摘要,启发式规则生成和自动模式学习。由代表一个时间表达为一个三元组,TEER识别颞提到男,受让人类型属性A至M,和归一M的值代入基于两个异构临床文本数据集形式化表示N.结果:在英国和1459 400个实际临床请求中文临床排放摘要。与六个最先进的基线进行比较。结果表明,人们达到了0.948的精确度,并在英国临床请求中召回0.877,而在中国出院摘要上的精确度为0.941,召回0.932。结论提出了一种用于多语舌颞表达提取的自动化方法。基于含有异质临床文本的两个数据集,比较结果表明了人格方法在异构叙事临床文本中的多语言时间表达提取中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号