首页> 外文OA文献 >Detection of extremely weak NQR signals using stochastic resonance and neural network theories
【2h】

Detection of extremely weak NQR signals using stochastic resonance and neural network theories

机译:使用随机谐振和神经网络理论检测极弱的NQR信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nuclear Quadrupole Resonance (NQR) signal detection is widely used for searching related substances of interest, such as explosives, petroleum, drugs, etc. NQR responses from these substances are usually very weak compared to background noise. Moreover, in some applications such as landmine detection, NQR responses decay with time quickly, and the required scanning times are usually prohibitively long. This paper presents a novel approach which can detect NQR signals of very low SNRs in such scenarios, by combining a stochastic resonance framework and neural network theory. Firstly, the approach relies on the design of a stochastic resonance (SR) system which can transform the original data into a nonlinear waveform with special SR features. Secondly, a (feedforward) robust neural network is trained to discern this nonlinear waveform accurately, in order to identify the NQR signal. Our results demonstrate that the neural network approach outer-performs traditional signal processing detection and estimation methods. Moreover, this stochastic resonance neural network approach (SRNN) can be designed to detect a variety of NQR signals which have similar NQR parameters but not identical resonant bands. The SRNN approach can also be effective in cases where both noise and radio frequency interference are strong relative to the NQR response.
机译:核四极针谐振(NQR)信号检测广泛用于搜索有关的感兴趣的物质,例如炸药,石油,药物等。与背景噪声相比,来自这些物质的NQR反应通常非常弱。此外,在某些应用中,如地图检测,NQR响应快速衰减,并且所需的扫描时间通常非常长。本文通过组合随机共振框架和神经网络理论,提出了一种新的方法,其可以在这种情况下检测在这种情况下非常低的SNR信号。首先,该方法依赖于随机谐振(SR)系统的设计,其可以将原始数据转换为具有特殊SR功能的非线性波形。其次,培训(前馈)稳健的神经网络以精确地识别该非线性波形,以便识别NQR信号。我们的结果表明,神经网络方法外部执行传统信号处理检测和估计方法。此外,这种随机共振神经网络方法(SRNN)可以设计用于检测具有类似NQR参数但不相同的谐振带的各种NQR信号。在噪声和射频干扰相对于NQR响应的情况下,SRNN方法也可以有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号