首页> 外文OA文献 >Prediction Skill of Extended Range 2-m Maximum Air Temperature Probabilistic Forecasts Using Machine Learning Post-Processing Methods
【2h】

Prediction Skill of Extended Range 2-m Maximum Air Temperature Probabilistic Forecasts Using Machine Learning Post-Processing Methods

机译:延伸范围的预测技巧2-M最大空气温度概率预测使用机器学习后处理方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The extended range temperature prediction is of great importance for public health, energy and agriculture. The two machine learning methods, namely, the neural networks and natural gradient boosting (NGBoost), are applied to improve the prediction skills of the 2-m maximum air temperature with lead times of 1–35 days over East Asia based on the Environmental Modeling Center, Global Ensemble Forecast System (EMC-GEFS), under the Subseasonal Experiment (SubX) of the National Centers for Environmental Prediction (NCEP). The ensemble model output statistics (EMOS) method is conducted as the benchmark for comparison. The results show that all the post-processing methods can efficiently reduce the prediction biases and uncertainties, especially in the lead week 1–2. The two machine learning methods outperform EMOS by approximately 0.2 in terms of the continuous ranked probability score (CRPS) overall. The neural networks and NGBoost behave as the best models in more than 90% of the study area over the validation period. In our study, CRPS, which is not a common loss function in machine learning, is introduced to make probabilistic forecasting possible for traditional neural networks. Moreover, we extend the NGBoost model to atmospheric sciences of probabilistic temperature forecasting which obtains satisfying performances.
机译:扩展范围温度预测对于公共卫生,能源和农业而言非常重要。这两种机器学习方法,即神经网络和自然梯度提升(NGBoost),用于根据环境建模,在东亚的11-35天内超过2米的最大空气温度的预测技能Center,全球集合预测系统(EMC-GEF),属于国家环境预测的国家中心(NCEP)的临时实验(Subx)。该集合模型输出统计信息(EMOS)方法是作为比较的基准。结果表明,所有后处理方法都可以有效地降低预测偏差和不确定性,特别是在总线周1-2中。两种机器学习方法在整体连续排名概率得分(CRP)方面以大约0.2优于0.2。神经网络和NGBoost在验证期间表现为超过90%的研究区域的最佳模型。在我们的研究中,引入了机器学习中不是普通损失功能的CRP,以使传统神经网络的概率预测。此外,我们将NgBoost模型扩展到概率温度预测的大气科学,从而获得令人满意的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号