首页> 外文OA文献 >Thermocapillary migration mechanism of molten silicon droplets on horizontal solid surfaces
【2h】

Thermocapillary migration mechanism of molten silicon droplets on horizontal solid surfaces

机译:水平固体表面熔融硅液滴的热涂层迁移机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Effective lubrication under extreme conditions such as high temperature is of considerable importance to ensure the reliability of a mechanical system. New lubricants that can endure high temperatures should be studied and employed as alternatives to traditional oil-based lubricant. In this paper, a thermocapillary model of a silicone-oil droplet is developed by solving the Navier–Stokes and energy equations to obtain the flow, pressure, and temperature fields. This is accomplished using a conservative microfluidic two-phase flow level set method designed to track the interface between two immiscible fluids. The numerical simulation accuracy is examined by comparing the numerical results with experimental results obtained for a silicone-oil droplet. Hence, the movement and deformation of molten silicon droplets on graphite and corundum are numerically simulated. The results show that a temperature gradient causes a tension gradient on the droplet surface, which in turn creates a thermocapillary vortex. As the vortex develops, the droplet migrates to the low-temperature zone. In the initial stage, the molten silicon droplet on the corundum substrate forms two opposite vortex cells, whereas two pairs of opposite vortices are formed in the silicone fluid on the graphite substrate. Multiple vortex cells gradually develop into a single vortex cell, and the migration velocity tends to be stable. The greater the basal temperature gradient, the stronger the internal thermocapillary convection of the molten silicon droplet has, which yields higher speeds.
机译:摘要在极端条件下的有效润滑如高温,以确保机械系统的可靠性是重要的。应研究能够忍受高温的新润滑剂,并担任传统油基润滑剂的替代品。在本文中,通过求解Navier-Stokes和能量方程来开发硅油液滴的热量量模型,以获得流量,压力和温度场。这是使用保守的微流体两相流量水平设定方法来完成,该方法设计用于跟踪两个不混溶的流体之间的界面。通过将数值结果与用于硅油液滴获得的实验结果进行比较来检查数值模拟精度。因此,在数值模拟石墨和刚玉上的熔融硅滴的运动和变形。结果表明,温度梯度导致液滴表面上的张力梯度,这反过来产生热量捕获涡流。随着涡流的发展,液滴迁移到低温区。在初始阶段,核基板上的熔融硅液滴形成两个相对的涡流细胞,而在石墨衬底上的硅氧烷流体中形成两对相反的涡流。多个涡旋细胞逐渐发展成单个涡旋细胞,迁移速度趋于稳定。基础温度梯度越大,熔融硅液滴的内部热量达到越强,其速度越高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号