首页> 外文期刊>Friction >Thermocapillary migration mechanism of molten silicon droplets on horizontal solid surfaces
【24h】

Thermocapillary migration mechanism of molten silicon droplets on horizontal solid surfaces

机译:水平固体表面上熔融硅滴的热毛细管迁移机理

获取原文
           

摘要

Abstract Effective lubrication under extreme conditions such as high temperature is of considerable importance to ensure the reliability of a mechanical system. New lubricants that can endure high temperatures should be studied and employed as alternatives to traditional oil-based lubricant. In this paper, a thermocapillary model of a silicone-oil droplet is developed by solving the Navier–Stokes and energy equations to obtain the flow, pressure, and temperature fields. This is accomplished using a conservative microfluidic two-phase flow level set method designed to track the interface between two immiscible fluids. The numerical simulation accuracy is examined by comparing the numerical results with experimental results obtained for a silicone-oil droplet. Hence, the movement and deformation of molten silicon droplets on graphite and corundum are numerically simulated. The results show that a temperature gradient causes a tension gradient on the droplet surface, which in turn creates a thermocapillary vortex. As the vortex develops, the droplet migrates to the low-temperature zone. In the initial stage, the molten silicon droplet on the corundum substrate forms two opposite vortex cells, whereas two pairs of opposite vortices are formed in the silicone fluid on the graphite substrate. Multiple vortex cells gradually develop into a single vortex cell, and the migration velocity tends to be stable. The greater the basal temperature gradient, the stronger the internal thermocapillary convection of the molten silicon droplet has, which yields higher speeds.
机译:摘要在高温等极端条件下进行有效润滑对于确保机械系统的可靠性至关重要。应该研究可以承受高温的新型润滑剂,并将其用作传统油基润滑剂的替代品。在本文中,通过求解Navier-Stokes和能量方程来获得流动,压力和温度场,从而开发了硅油滴的热毛细管模型。这是通过使用保守的微流体两相流液位设置方法实现的,该方法设计为跟踪两种不混溶流体之间的界面。通过将数值结果与硅油滴的实验结果进行比较,可以检验数值模拟的准确性。因此,数值模拟了熔融硅滴在石墨和刚玉上的运动和变形。结果表明,温度梯度会在液滴表面产生张力梯度,进而产生热毛细管涡旋。随着涡旋的发展,液滴迁移到低温区。在初始阶段,刚玉基体上的熔融硅滴形成两个相对的涡流单元,而在石墨基体上的硅油中形成两对相对的涡流。多个涡流细胞逐渐发展为单个涡流细胞,迁移速度趋于稳定。基础温度梯度越大,熔融硅滴的内部热毛细管对流越强,从而产生更高的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号