首页> 外文OA文献 >A Support Vector Machine Forecasting Model for Typhoon Flood Inundation Mapping and Early Flood Warning Systems
【2h】

A Support Vector Machine Forecasting Model for Typhoon Flood Inundation Mapping and Early Flood Warning Systems

机译:台风洪水淹没映射和早期防洪系统的支持向量机预测模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate real-time forecasts of inundation depth and extent during typhoon flooding are crucial to disaster emergency response. To manage disaster risk, the development of a flood inundation forecasting model has been recognized as essential. In this paper, a forecasting model by integrating a hydrodynamic model, k-means clustering algorithm and support vector machines (SVM) is proposed. The task of this study is divided into four parts. First, the SOBEK model is used in simulating inundation hydrodynamics. Second, the k-means clustering algorithm classifies flood inundation data and identifies the dominant clusters of flood gauging stations. Third, SVM yields water level forecasts with 1⁻3 h lead time. Finally, a spatial expansion module produces flood inundation maps, based on forecasted information from flood gauging stations and consideration of flood causative factors. To demonstrate the effectiveness of the proposed forecasting model, we present an application to the Yilan River basin, Taiwan. The forecasting results indicate that the simulated water level forecasts from the point forecasting module are in good agreement with the observed data, and the proposed model yields the accurate flood inundation maps for 1⁻3 h lead time. These results indicate that the proposed model accurately forecasts not only flood inundation depth but also inundation extent. This flood inundation forecasting model is expected to be useful in providing early flood warning information for disaster emergency response.
机译:在台风洪水中准确的淹没深度和程度的准确实时预测对灾害应急响应至关重要。为了管理灾害风险,洪水淹没预测模型的发展已被认为是必不可少的。本文提出了一种通过集成流体动力学模型的预测模型,K-Means聚类算法和支持向量机(SVM)。本研究的任务分为四个部分。首先,Sobek模型用于模拟淹没流体动力学。其次,K-means聚类算法对洪水淹没数据进行分类,并识别洪水型站的主导集群。第三,SVM产生水位预测13小时的时间。最后,空间膨胀模块基于来自洪水测量站的预测信息和洪水造成因子的考虑,产生洪水淹没地图。为了证明拟议的预测模式的有效性,我们向台湾宜兰河流域提供了申请。预测结果表明,点预测模块的模拟水位预测与观察到的数据吻合良好,拟议的模型会产生1×3 H递送时间的准确洪水淹没图。这些结果表明,拟议的模型不仅可以预测洪水淹没深度,而且是淹没程度。预计这一洪水淹没预测模型将有助于为灾害应急响应提供早期洪水预警信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号