首页> 外文OA文献 >Multitemporal Land Use and Land Cover Classification from Time-Series Landsat Datasets Using Harmonic Analysis with a Minimum Spectral Distance Algorithm
【2h】

Multitemporal Land Use and Land Cover Classification from Time-Series Landsat Datasets Using Harmonic Analysis with a Minimum Spectral Distance Algorithm

机译:利用谐波距离算法使用谐波分析的时间序列Landsat数据集多型土地利用和土地覆盖分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An understanding of historical and present land use and land cover (LULC) information and its changes, such as urbanization and urban growth, is critical for city planners, land managers and resource managers in any rapidly changing landscape. To deal with this situation, the development of a new supervised classification method for multitemporal LULC mapping with long-term reliable information is necessary. The ultimate goal of this study was to develop a new classification method using harmonic analysis with a minimum spectral distance algorithm for multitemporal LULC mapping. Here, the Jiangning District of Nanjing City, Jiangsu Province, China was chosen as the study area. The research methodology consisted of two main components: (1) Landsat data selection and time-series spectral reflectance reconstruction and (2) multitemporal LULC classification using HA with a minimum spectral distance algorithm. The results revealed that the overall accuracy and Kappa hat coefficients of the four LULC maps in 2000, 2006, 2011, and 2017 were 97.03%, 90.25%, 91.19%, 86.32% and 95.35%, 84.48%, 86.74%, 80.24%, respectively. Further, the average producer accuracy and user accuracy of the urban and built-up land, agricultural land, forest land, and water bodies from the four LULC maps were 92.30%, 90.98%, 94.80%, 85.65% and 90.28%, 93.17%, 84.40%, 99.50%, respectively. Consequently, it can be concluded that the newly developed supervised classification method using harmonic analysis with a minimum spectral distance algorithm can efficiently classify multitemporal LULC maps.
机译:对历史和目前的土地利用和土地覆盖(LULC)信息及其变化,如城市化和城市增长,对城市规划者,土地管理人员和资源管理人员在任何迅速变化的景观中,对城市规划者来说至关重要。要处理这种情况,需要开发具有长期可靠信息的多立体策划映射的新监督分类方法。本研究的最终目标是开发一种利用谐波距离算法的谐波距离算法来开发一种新的分类方法,用于多型LULC映射。中国江苏省江宁区江苏省江宁区被选为研究区。研究方法包括两个主要组件:(1)LANDSAT数据选择和时间序列光谱反射率重建和(2)使用HA具有最小光谱距离算法的多型LULC分类。结果表明,2000年,2006年,2011年和2017年四个LULC地图的整体准确性和κ帽系数为97.03%,90.25%,91.19%,86.32%和95.35%,84.48%,86.74%,80.24%,分别。此外,来自四个LULC地图的城市和建筑土地,农业用地,林地和水体的平均生产者准确性和用户准确性为92.30%,90.98%,94.80%,85.65%和90.28%,93.17%分别为84.40%,99.50%。因此,可以得出结论,使用具有最小频谱距离算法的谐波分析的新开发的监督分类方法可以有效地分类多型LULC地图。

著录项

  • 作者

    Jing Sun; Suwit Ongsomwang;

  • 作者单位
  • 年度 2020
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号