首页> 外文OA文献 >Bayesian MISE convergence rates of Polya urn based density estimators: asymptotic comparisons and choice of prior parameters
【2h】

Bayesian MISE convergence rates of Polya urn based density estimators: asymptotic comparisons and choice of prior parameters

机译:基于Polya URN的密度估计器的贝叶斯MISE收敛速率:渐近比较与现有参数的选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mixture models are well-known for their versatility, and the Bayesianparadigm is a suitable platform for mixture analysis, particularly when thenumber of components is unknown. Bhattacharya (2008) introduced a mixture modelbased on the Dirichlet process, where an upper bound on the unknown number ofcomponents is to be specified. Here we consider a Bayesian asymptotic frameworkfor objectively specifying the upper bound, which we assume to depend on thesample size. In particular, we define a Bayesian analogue of the meanintegrated squared error (Bayesian MISE), and select that form of the upperbound, and also that form of the precision parameter of the underlyingDirichlet process, for which Bayesian MISE of a specific density estimator,which is a suitable modification of the Polya-urn based prior predictive model,converges at a desired rate. As a byproduct of our approach, we investigateasymptotic choice of the precision parameter of the traditional Dirichletprocess mixture model; the density estimator we consider here is a modificationof the prior predictive distribution of Escobar & West (1995) associated withthe Polya urn model. Various asymptotic issues related to the twoaforementioned mixtures, including comparative performances, are alsoinvestigated.
机译:混合物模型对于它们的多功能性公知的,并且Bayesianparadigm为混合物分析一个合适的平台,特别是当数量写部件的是未知的。查亚(2008)介绍了基于模型的Dirichlet过程,其中一对未知号码ofcomponents上限将被指定的混合物。在这里,我们考虑一个贝叶斯渐近frameworkfor客观上指定的上限,我们假定依靠thesample大小。特别地,我们定义meanintegrated平方误差(贝叶斯MISE)的贝叶斯类似物,并选择上界的那种形式,并且还使得underlyingDirichlet过程的精度参数,其中形式MISE特定密度估计贝叶斯,这是-瓮玻利耶基于事先预测模型的适当修改,以期望的速率收敛。作为我们的方法的副产品,我们传统的Dirichletprocess混合模型的精度参数的investigateasymptotic选择;我们在这里考虑的密度估计是modificationof埃斯科瓦尔和西(1995)相关联的任意不等阶波利亚瓮模型之前预测分布。有关twoaforementioned混合物,包括比较表演各种渐近问题,都alsoinvestigated。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号